2020 Vol. 11

Display Method:
Research
Abstract:
Background

The Bar-headed Goose (Anser indicus) breeds across the high plains and plateau of Central Asia and winters in the Qinghai-Tibet Plateau (QTP), the Yunnan-Guizhou Plateau and the Indian sub-continent. Of the two recognized discrete flyways of the Bar-headed Goose, the Eastern Tibetan Flyway (ETF) is the larger, comprising at least six migration routes. However, we remain ignorant about their migratory connectivity, habitat use and effectiveness of site-safeguard mechanisms set in place for the species.

Methods

We tracked 30 ETF Bar-headed Geese from Chinese and Mongolian breeding areas to their wintering grounds using GPS/GSM transmitters, to determine their migration routes and stopover staging patterns within the QTP, overlaying these upon GIS layers of protected area status and habitat type, to model their habitat selection.

Results

In total, 14 tagged Bar-headed Geese provided information on their entire autumn migration and 4 geese on their entire spring migration. Qinghai Lake marked birds overwintered in the QTP (n = 2), geese tagged in Mongolia wintered either in the QTP (n = 3) or in India/Bangladesh (n = 9), representing three of the migration routes within the ETF. In total, tagged birds staged at 79 different stopover sites within QTP in autumn and 23 in spring, of which 65% (autumn) and 59% (spring) of all fixes fell within the boundaries of either National Nature Reserves (NNRs) or Important Birds Areas (IBAs) inthe QTP. Bar-headed Geese predominantly occurred on four land-cover types: grassland (mostly by day), water bodies (at night), wetlands and bare substrates (salt flats, dry lake/river substrates and plough) with little change in proportion. Generalized linear mixed models comparing presence with pseudo-absence data suggested geese strongly selected for wetlands as staging habitat, avoiding bare substrates in spring.

Conclusions

Based on our limited observations of these tagged geese, this study is the first to show that the current designated National Nature Reserves in place in the staging areas within theQTP appear adequate to protect this increasing population. In addition, Hala Lake in Qinghai Province and adjacent areas used as initial QTP staging during autumn migration (currently outside of designated as NNRs/IBAs) are recommended for protection, based on their use by tagged birds from this study. Habitat modelling confirmed the importance of natural wetlands as feeding areas and safe areas of open water as roosting places.

Abstract:
Background

Reconciling agriculture and biodiversity conservation is a challenge given the growing demand for agricultural products. In recent decades, Argentina has witnessed agricultural expansion and intensification affecting biodiversity and associated ecosystem services. Within agroecosystems, the level of habitat quality is critical for birds, and may depend on vegetation structure, availability of invertebrate prey, and the use of pesticides. Although the relationship between vegetation structure and avian occurrence has been widely studied, to our knowledge, there are no studies that also incorporate prey availability throughout the cycle of soybean crops in Argentina. We estimated and predicted the effects of land cover and temporal variation on the occurrence of avian foraging guilds in Entre Ríos, Argentina, in order to guide management related to potential ecosystem services provided by birds. We also estimated temporal effects of vegetation structure and insecticides on the main arthropod orders consumed by birds to evaluate prey availability.

Methods

We conducted bird and arthropod surveys for 2 years along transects located in 20 randomly selected soybean fields (N=60) and their adjacent borders (N=78) throughout the crop growing season, in four seasons. We estimated avian occupancy, accounting for imperfect detection, and arthropod counts fitting generalized linear mixed models.

Results

The number of native trees in field borders positively influenced the occurrence of most bird species, mainly insectivores. Granivore foliage gleaners, also were positively affected by grass height. Salliers and aerial foragers were weakly affected by distance to forest and native trees. In general, the availability of invertebrates to birds was highest during the third season. Arthropod counts in borders were greater during the last three crop stages than during the pre-sowing period.

Conclusions

We found that with 10 to 15 native tree species in borders, coupled with a complex vegetation structure with shrubs and grasses, we could conserve a wide spectrum of insectivorous birds, and may contribute to the invertebrate pest control service. Vegetated field borders function as a refuge for arthropods, especially agriculturally beneficial taxa such as Hymenopterans. Finally, several groups of birds use the interior of the fields and could help control pests.

Abstract:
Background

Remnant microhabitats are important for bird habitat selection and plant regeneration in the fragmented habitat. However, empirical information on the consequences of how microhabitat use by birds affects the early recruitment of plants is lacking.

Methods

In this study, we evaluated whether microhabitat selection by the Black Bulbul (Hypsipetes leucocephalus) (J. F. Gmelin, 1789) impacts the early recruitment of the endangered tree species, the Chinese Yew (Taxus chinensis (Pilger) Rehd), in a fragmented forest over a 4-year period (2011–2012, 2018–2019).

Results

Our results showed the main factors affecting H. leucocephalus microhabitat selection were distance to the nearest T. chinensis mature tree, herb cover and density, leaf litter cover, and vegetation type. Moreover, the results of logistic regression also highlighted the importance of elevation, distance to light gap and roads, tree cover in bird microhabitat selection. Furthermore, the seed emergence rate in microhabitats used by birds did not differ from the natural forest, which was related to five factors of bird microhabitat. The Random Forest model showed that seedling emergence rate was increased with leaf litter cover and distance to fallen dead trees, but decreased in relation to herb cover, slope, and elevation.

Conclusion

Our results highlight the importance of remnant microhabitats in fragmented forests for sustaining forest ecology and optimal management. The contribution of microhabitats used by birds to plant recruitment provides insights into how frugivore species contribute to plant regeneration, which should be incorporated in future conservation and management practices of fragmented forests.

Abstract:
Background

Habitat loss, fragmentation and decrease of habitat quality caused by urbanization have led to a dramatic decline in biodiversity worldwide. For highly urbanized areas, parks have become "islands" or habitat fragments for wildlife. As an important indicator group of urban ecosystem health, the response of birds to urbanization has attracted the global attention of ecologists. Understanding the key factors affecting bird diversity in urbanized environment is crucial to the protection of biodiversity in urban ecosystems.

Methods

We used the line-transect method to survey birds in 37 urban parks in Nanjing, China. We also measured a number of park characteristics (area, isolation, shape index, environmental noise, distance to city center, and habitat diversity) that are commonly assumed to influence bird diversity. We then used the information-theoretic multi-model inference approach to determine which park characteristics had significant impacts on bird species richness.

Results

We found that park area, habitat diversity and the distance to city center were the best positive predictors of bird species richness in Nanjing urban parks. By contrast, park isolation, park shape and environmental noise had little or no influence on bird diversity.

Conclusions

Our study highlights the importance of park area, habitat diversity and the distance to city center in determining bird diversity in Nanjing city parks. Therefore, from a conservation viewpoint, we recommend that large parks with complex and diverse habitats far away from the city center should be retained or constructed to increase bird diversity in urban design and planning.

Abstract:
Background

Flying birds, especially those that hover, need to meet high energetic demands. Birds that meet this demand through nectarivory face the added challenges of maintaining homeostasis in the face of spikes in blood sugar associated with nectar meals, as well as transporting that sugar to energetically demanding tissues. Nectarivory has evolved many times in birds and we hypothesized thatthe challenges of this dietary strategy would exert selective pressure on key aspects of metabolic physiology. Specifically, we hypothesized we would find convergent or parallel amino acid substitutions among different nectarivorous lineages in a protein important to sensing, regulating, and transporting glucose, glucose transporter 2 (GLUT2).

Methods

Genetic sequences for GLUT2 were obtained from ten pairs of nectarivorous and non-nectarivorous sister taxa. We performed PCR amplification of the intracellular C-terminal domain of GLUT2 and adjacent protein domains due to the role of this region in determination of transport rate, substrate specificity and glucosensing.

Results

Our findings have ruled out the C-terminal regulatory region of GLUT2 as a target for selection by sugar-rich diet among avian nectarivores, though selection among hummingbirds, the oldest avian nectarivores, cannot be discounted.

Conclusion

Our results indicate future studies should examine down-stream targets of GLUT2-mediated glucosensing and insulin secretion, such as insulin receptors and their targets, as potential sites of selection by nectarivory in birds.

Abstract:
Background

The Elegant Pitta (Pitta elegans) complex displays a remarkable diversity of morphological and bioacoustic traits across five taxa currently recognized as subspecies. They differ in plumage characteristics (such as red versus black belly patches; supercilium color and extent; and white versus black throats), in lifestyle (resident versus migratory) and in vocalizations. We investigated the morphological, bioacoustic and ecological differences across all taxa after recent studies demostrated the importance of these traits in recognizing biological species limits across pittas.

Methods

Morphometric analysis was carried out by measuring tarsus, wing, tail and bill lengths of 15 specimens at the Natural History Museum, UK, and plumages were inspected across 106 unique individuals from four different repositories. Bioacoustic analysis was based on 134 range-wide sound recordings. Two types of calls, territorial calls and alarm calls, were analyzed using different sets of parameters. Principal component analysis and the Isler Criterion were applied to the measurements. Playback trials were conducted to explore the levels of response of each taxon to the call types of the other taxa.

Results

The territorial call of concinna exhibits a distinct two-element motif, while elegans, maria and virginalis utter a three-element motif in which the first two elements are given in quick succession. On the other hand, vigorsii, produces both two-element and three-element motifs with longer breaks in between elements. As further corroborated by the playback trials, the three taxa elegans, virginalis and maria form a tight vocal cluster, whereas each concinna and vigorsii are distinct. The alarm call turned out to be less diagnostic even though most taxa did roughly separate into different vocal clusters. Morphometric analysis failed to produce strong differences, but plumage distinctions among multiple taxa are pronounced.

Conclusions

We suggest splitting the Elegant Pitta into three biological species based on bioacoustic and—less so—plumage evidence: (1) Temminck's Elegant Pitta P. elegans (including subspecies elegans, virginalis and maria), (2) Wallace's Elegant Pitta P. concinna (monotypic), and (3) Banda Elegant Pitta P. vigorsii (monotypic).

Abstract:
Background

The allocation of resources between offspring size and number is a central question of life-history theory. Although several studies have tested the existence of this trade-off, few studies have investigated how environmental variation influences the allocation of resources to offspring size and offspring number. Additionally, the relationship between population dynamics and the offspring size and number allocation is far less understood.

Methods

We investigate whether resource allocation between egg size and clutch size is influenced by the ambient temperature and whether it may be related to apparent nest survival rate. We measured 1548 eggs from 541 nests of two closely related shorebird species, the Kentish Plover (Charadrius alexandrinus) and the White-faced Plover (C. dealbatus) in China, in four populations that exhibit contrasting ambient environments. We weighed females, monitored nest survival, and calculated the variance of ambient temperature.

Results

Although we found that egg size and clutch size were all different between the four breeding populations, the reproductive investment (i.e. total clutch volume) was similar between populations. We also found that populations with a high survival rate had relatively larger eggs and a smaller clutch than populations with a low nest survival rate. The latter result is in line with a conservative/diversified bet-hedging strategy.

Conclusions

Our findings suggest that plovers may increasing fitness by investing fewer, larger or many, small according local nest survival rate to make a similar investment in reproduction, and thereby may have an impact on population demography.

Abstract:
Background

Small coastal wetlands are vital sites for wintering waterbirds. Identifying important habitats is critical for managing waterbirds effectively. The Vourkari inlet is a small coastal wetland located near the capital Athens, within the most urbanized and industrialized area of Greece. We aimed at identifying the most important habitats for waterbirds at the Vourkari inlet during winter.

Methods

Data about habitat use and availability were collected for 14 waterbird species and for seven habitat classes. Habitat selection (Manly's selection ratio), overlap indices (Pianka's niche overlap index) and null models were calculated.

Results

All the studied waterbird species selected available habitats nonrandomly. Shallow waters (0-2 m), were used by 13 waterbirds and selected by five waterbirds. Pools and channels were used and selected by 10 species. Mud was used by nine species and selected by six species. Mud with rocky substrate was used by nine species and selected by eight species. Medium (2-4 m) and deep (4-6 m) open water habitats were used by seven species and selected by four species. Halophytic vegetation was used by six species and selected by two species. Several habitats were selected by nationally important populations: mudflat habitats (i.e., mud, mud with rocky substrate and pools and channels) by Common Redshanks (Tringa totanus), halophytic vegetation by Little Egrets (Egretta garzetta), shallow waters by Common Shelducks (Tadorna tadorna) and medium and deep waters by Sandwich Terns (Thalasseus sandvicencis), whilst shallow waters and mudflat habitats were preferred by a possibly internationally important population of Mediterranean Gulls (Ichthyaetus melanocephalus). Although overlap in habitat use between species was generally low, null models indicated habitat sharing and a lack of competition.

Conclusions

Waterbirds coexisted in the absence of competition for habitats at Vourkari, where they mostly used and preferred shallow water and mudflats. Small coastal wetlands are numerous, both in Greece and worldwide, therefore our findings would be useful as a basis for comparisons, both temporal at the inlet and spatial with other sites, that would help assess the importance of habitats and improve management strategies to benefit waterbirds, especially in areas with similar Mediterranean-type habitats and climate.

Abstract:
Background

In this paper, we present evidence that biologging is strongly correlated with eye irritation, with sometimes severely impairing effects. A migratory population of the Northern Bald Ibis (Geronticus eremita, NBI) is reintroduced in Europe, in course of a LIFE + project. Since 2014, all individuals have been equipped with GPS-devices. Remote monitoring allows the implementation of focussed measures against major mortality causes.

Methods

Initially all birds carried battery-powered devices, fixed on the lower back of the birds. Since 2016 an increasing amount of birds has been equipped with solar-powered devices, fixed on the upper back, the more sun-exposed position. In 2016, we observed opacity in the cornea of one eye (unilateral corneal opacity; UCO) during a regular health monitoring for the first time.

Results

By 2018, a total of 25 birds were affected by UCO, with varying intensity up to blindness. Clinical examination of the birds revealed no clear cause for the symptoms. However, only birds carrying a device on the upper back were affected (2017 up to 70% of this group). In contrast, none of the birds carrying devices on the lower back ever showed UCO symptoms. This unexpected relationship between tagging and UCO was discovered in 2017. After we took countermeasures by removing the device or repositioning it on the lower back, we observed an immediate reduction of the incidence rate without any new cases reported since January 2019. NBI roost with their head on the back, one eye closely placed to the device if it was positioned on the upper back. Thus, we conclude that the most parsimonious explanation for the symptomatology is either a repetitive slight temperature rise in the corneal tissue due to electromagnetic radiation by the GSM module of the device or a repetitive slight mechanical irritation of the corneal surface. Concrete evidence is missing so far. Meanwhile, cases of UCO were found in another NBI population.

Conclusion

Our observations indicate that further research in the fast-growing field of biologging is urgently needed. The findings question the positioning of devices on the upper back in birds roosting with the head on the back.

Abstract:
Background

Extra-pair paternity (EPP) in birds provides benefits in terms of more offspring, and characteristics for maintenance of this behaviour have been the subject of investigation. Microorganisms are known to be transmitted during mating, especially when mating with multiple partners, and factors reducing this cost of multiple mating are expected. Further, plumage brightness and colour intensity have been shown to be important traits to benefits from multiple mating as predicted by sexual selection. The aim of this study was to investigate the relationship between the rate of extra-pair paternity and the relative size of the uropygial gland at the interspecific level, as the uropygial gland is an exocrine gland hypothesized to produce antiparasitic substances and further identified to affect plumage brightness. Because of the expected benefits of large uropygial gland in scenarios of sexual selection, we predicted a positive correlation with EPP.

Methods

We collected information from the literature of uropygial gland size and frequency of extra-pair paternity of 60 avian species of different families and explored the predicted positive correlation between them. We did so with means of comparative analyses that considered phylogenetic relationship as random factor and included body mass as covariate. We used Markov chain Monte Carlo generalized linear mixed models that were weighted by number of nests used to estimate extra-pair paternity.

Results

We detected a positive relationship between level of extra-pair paternity and uropygial gland size at an interspecific level. This finding is consistent with the prediction.

Conclusions

We discuss the importance of this result in scenarios of sexual selection and argue that the detected relationship may have arisen by utilizing antiparasitic secretions through secondary sexual characters indicating parasite resistance.

Abstract:
Background

Land use and development alter mudflat and wetland habitat availability, although mudflats and wetlands provide important stopover habitats for shorebirds during the spring and autumn migrations and support communities of ducks and geese during the winter months in the Republic of Korea. This study investigated land use changes around Sihwa Lake (Republic of Korea) and evaluated the effect of these changes on waterbird community characteristics.

Methods

We conducted a land-use-change analysis at the medium-resolution level using land cover maps for 2001, 2007, 2009, and 2014. Also, a tidal stream survey was conducted in Sihwa Lake and the surrounding reclaimed mudflats every season for 10 years (2003–2012) to identify the seasonal and interannual variations in waterbird species composition. To determine the total annual waterbird species and population counts, species diversity index, and interspecies variations, a TRIM (trends and indices for monitoring data) analysis was used.

Results

Wetland area decreased more than 10% while agricultural land, barren land, and grassland area increased more than 10% due to continuous reclamation activities around Sihwa Lake. Barren land later turned into agricultural land or other land use. Sixty-three species and 566, 623 individuals were recorded. The number of species, population size, and species diversity index by year and by species showed decreasing trends that were more marked in spring and summer. Furthermore, seasonal and annual variations in waterbird species composition showed decreasing trends in dabbling ducks, herons, grebes, and shorebirds but diving ducks displayed increasing trends. In particular, shorebirds were reduced to a greater extent than other waterbird species because of the reduction and simplification of the intertidal zone, and shallow waters caused by reclamation and road construction.

Conclusions

Increased development and construction around Sihwa Lake has altered migratory shorebird populations with a general decline in species diversity and population size. The greatest decline was observed in wading birds, while diving duck populations showed increasing trends.

Abstract:
Background

Small birds in temperate habitats must either migrate, or adjust aspects of their morphology, physiology and behavior to cope with seasonal change in temperature and photoperiod. It is, however, difficult to accurately measure how seasonal changes in temperature and photoperiod affect physiological processes such as basal metabolic rate (BMR) and metabolic activity. To address this problem, we collected data in each month of the year on body mass (Mb) and BMR, and conducted a series of experiments to determine the effect of temperature and photoperiod on Mb, BMR and physiological markers of metabolic activity, in the Eurasian Tree Sparrow (Passer montanus).

Methods

In one experiment, we measured monthly change in Mb and BMR in a captive group of birds over a year. In another experiment, we examined the effects of acclimating birds to two different temperatures, 10 and 30 ℃, and a long and a short photoperiod (16 h light:8 h dark and 8 h light:16 h dark, respectively) for 4 weeks.

Results

We found that these treatments induced sparrows to adjust their Mb and metabolic rate processes. Acclimation to 30 ℃ for 4 weeks significantly decreased sparrows' Mb, BMR, and energy intake, including both gross energy intake and digestible energy intake, compared to birds acclimated to 10 ℃. The dry mass of the liver, kidneys and digestive tract of birds acclimated to 30 ℃ also significantly decreased, although their heart and skeletal muscle mass did not change significantly relative to those acclimated to 10 ℃. Birds acclimated to 30 ℃ also had lower mitochondrial state-4 respiration (S4R) and cytochrome c oxidase (COX) activity in their liver and skeletal muscle, compared to those acclimated to 10 ℃. Birds acclimated to the long photoperiod also had lower mitochondrial S4R and COX activity in their liver, compared to those acclimated to the short photoperiod.

Conclusions

These results illustrate the changes in morphology, physiology, and enzyme activity induced by seasonal change in temperature and photoperiod in a small temperate passerine. Both temperature and photoperiod probably have a strong effect on seasonal variation in metabolic heat production in small birds in temperate regions. The effect of temperature is, however, stronger than that of photoperiod.

Abstract:
Background

Thrush species are rarely parasitized by cuckoos, but many have a strong egg recognition ability. To date, there is a limited understanding of the relationship between host egg rejection and cuckoo parasitism rate.

Methods

By using egg experiments in the field, we compared egg rejection between two non-parasitized potential host species and two parasitized hosts of cuckoos in the same region.

Results

The White-bellied Redstart (Luscinia phoenicuroides), a host of the Common Cuckoo (Cuculus canorus), rejected 66.6% of blue model eggs; the Elliot's Laughingthrush (Trochalopteron elliotii), a host of the Large Hawk Cuckoo (Hierococcyx sparverioides), rejected 25% of blue model eggs and 46.1% of white model eggs; and the Chestnut Thrush (Turdus rubrocanus) and the Chinese Thrush (T. mupinensis), in which cuckoo parasitism has not been recorded, rejected 41.1 and 83.3% of blue model eggs, respectively. There were no significant differences in the egg rejection among them, although the Chinese Thrush showed the highest rate of egg rejection.

Conclusions

This study indicates that the egg recognition ability of cuckoo hosts has no correlation with the actual parasitism rate of cuckoos. We suggest that the egg recognition ability of the two potential host species may have been retained from a parasitic history with the cuckoo, while the two common host species have developed their egg rejection abilities due to current parasitism pressure. In addition, our study highlights the importance of the multi- cuckoo parasite system for better understanding the selection pressure of parasitism on the evolution of host egg recognition abilities.

Abstract:
Background

Evaluating relationships between avian populations and their habitat is important for understanding the biology of these species and for management decisions that improve the effectiveness of restoration practices. We investigated how habitat variation along a disturbance gradient affected the abundance of three insectivorous bird species, White-bellied Antbird (Myrmeciza longipes), Barred Antshrike (Thamnophilus doliatus), and Pale-breasted Spinetail (Synallaxis albescens) in a Neotropical dry forest remnant in central Colombia.

Methods

The study area, which is located in Magdalena Valley, is under ecological restoration after the construction of the "El Quimbo" hydroelectric dam, with a gradient of habitat conditions, from relatively advanced secondary growth to recently disturbed areas. We conducted bird surveys and quantified the habitat conditions from June 2018 to June 2019. We compared the relative abundance of the birds among the three zones with increasing disturbance and modeled the relationship between the bird abundance with the micro- and landscape-habitat conditions, with Poisson generalized linear model regression.

Results

The relative abundance of the three bird species varied according to the habitat features and disturbance level. The abundance of White-bellied Antbirds was higher in forests and thickets than shrubland fragments; Barred Antshrike was more abundant in shrubland and thickets than in forest fragments, and Pale-breasted Spinetail had the highest abundance in shrubland and the lowest in forest fragments. The abundance of both White-bellied Antbird and Pale-breasted Spinetail did not differ among zones with different levels of disturbance, while the abundance of Barred Antshrike decreased in zones with more disturbance.

Conclusions

There were significant differences in the habitat relationships of the three understory insectivorous species along the disturbance gradient, although these species were within the same trophic group. These bird species preferred different stages of habitat succession and responded to different habitat and landscape features. Increasing forest fragment areas and decreasing the amount of edge would be useful restoration priorities for these and other similar avian species in this study area.

Abstract:
Background

Among urban stimuli, anthropogenic noise has been identified to be one of the behavioral drivers of species that rely on acoustic signals for communication. Studies have shown both species-specific and assemblage responses to urban noise, ranging from the modulation of their acoustic frequencies and spatiotemporal adjustments to declines in species richness. In this study, we assessed the citywide relationship between two anthropogenic noise variables (noise levels recorded during bird surveys and daily average noise levels) and vegetation cover with bird species richness.

Methods

This study was conducted in the city of Xalapa (Mexico) through a 114 citywide point-count survey. We recorded bird communities at each sampling site. We measured noise levels using a sound level meter while performing point-counts. Then, we generated a map of average daily noise of the city using an array of 61 autonomous recording units distributed across the city of Xalapa and calculated daily noise levels for the 114 points. We ran a linear model (LM) to assess potential relationships between both point-count and daily (24 h) noise values and vegetation cover with bird richness.

Results

Results from the LM show: (1) a negative relationship between maximum point-count noise and avian species richness, (2) no relationship between 24 h noise and bird species richness, and (3) a positive relationship between vegetation cover and bird species richness.

Conclusions

Results provide evidence that decreases in urban bird species richness do not necessarily imply the permanent absence of species, suggesting that birds can temporarily fly away from or avoid sites when noisy, become cryptic while noisy events are occurring, or be undetected due to our inability to record them in the field during noisy events.

Abstract:
Background

Patterns of biological diversity and richness can vary along the elevational gradients among mountain systems making it difficult to conclude the general pattern. The drivers of such pattern are also poorly known in the southern flank of the Himalaya due to limited studies. Therefore, we assessed the species richness, seasonal patterns and drivers of avian diversity along an elevational gradient on Mardi Himal trekking trail, a newly open tourist route in Annapurna Conservation Area of the central Himalaya.

Methods

Two surveys (winter and summer seasons of 2019) were conducted from the bank of Seti-Gandaki River confluence (1030 m above sea level, asl) up to the Low Camp (3050 m asl) of the Mardi Himal. The point count method was employed in every 100 m rise in the elevation. Diversity indices were calculated and bird abundance data on species, sites, seasons and environmental variables were analyzed. Generalized linear model, polynomial regression and ordinary least square regression were performed to examine the importance of environmental factors in shaping the avian richness pattern.

Results

A total of 673 individuals of birds belonging to 112 species, of which 72 in winter and 80 in summer, were recorded. We observed a hump-shaped pattern of the overall species richness along the elevational gradient. The richness pattern remained consistent even when explored by season, for winter and summer separately. Diversity indices were found higher during the summer. Elevation and mean monthly temperature in both seasons showed non-linear relation with avian species richness. Precipitation exhibited positive association in summer whereas the same in winter was negatively correlated with avian species richness. Distance to the nearest water source and the nearest human settlement were negatively correlated with the richness of birds. Small-ranged and insectivorous birds were under the strong influence of gradients on climatic variables like temperature and precipitation.

Conclusions

We conclude that the combined effects of multiple factors such as area, gradients of climate (i.e. temperature and precipitation), resource availability and disturbance play an important role in bird diversity and richness pattern along an elevational gradient of a montane environment in Mardi Himal.

Abstract:
Background

Our understanding of any impacts of swans on other waterbirds (including other swans), and potential effects on waterbird community structure, remain limited by a paucity of fundamental behavioural and ecological data, including which species swans interact aggressively with and how frequently such interactions occur.

Methods

Behavioural observations of aggression by swans and other waterbirds in winters 2018/2019 and 2019/2020, were carried out via live-streaming webcams at two wintering sites in the UK. All occurrence sampling was used to identify all aggressive interactions between conspecific or heterospecifics individuals, whilst focal observations were used to record the total time spent by swans on aggressive interactions with other swans. Binomial tests were then used to assess whether the proportion of intraspecific aggressive interactions of each species differed from 0.5 (which would indicate equal numbers of intraspecific and interspecific interactions). Zero-inflated generalized linear mixed effects models (ZIGLMMs) were used to assess between-individual variation in the total time spent by swans on aggressive interactions with other swans.

Results

All three swan species were most frequently aggressive towards, and received most aggression from, their conspecifics. Our 10-min focal observations showed that Whooper (Cygnus cygnus) and Bewick's Swans (C. columbianus bewickii) spent 13.8± 4.7 s (means± 95% CI) and 1.4± 0.3 s, respectively, on aggression with other swans. These durations were equivalent to 2.3% and 0.2% of the Whooper and Bewick's Swan time-activity budgets, respectively. Model selection indicated that the time spent in aggressive interactions with other swans was best-explained by the number of other swans present for Whooper Swans, and an interactive effect of time of day and winter of observation for Bewick's Swans. However, the relationship between swan numbers and Whooper Swan aggression times was not strong (R2= 19.3%).

Conclusions

Whilst swans do exhibit some aggression towards smaller waterbirds, the majority of aggression by swans is directed towards other swans. Aggression focused on conspecifics likely reflects greater overlap in resource use, and hence higher potential for competition, between individuals of the same species. Our study provides an example of how questions relating to avian behaviour can be addressed using methods of remote data collection such as live-streaming webcams.

Abstract:
Background

The dynamics and structure of many bird communities are changing due to the global warming and changes in the land use and management. The Ebro Valley constitutes one of the chief wintering areas for several passerine species in Iberia, and the reed beds spread across this Valley concentrate huge numbers of birds that use them to roost, while the surrounding agricultural areas serve as main foraging habitats. The aims of this work are (1) to quantify how variable a non-breeding passerine bird community associated to a reed bed area in the Ebro Valley is, and, (2) to test for the effect of weather on possible annual fluctuations in species' proportions at a regional/local scale.

Methods

We used for that ringing data collected at Badina de Escudera lagoon (Navarra) over a 12-year period.

Results

Though, overall, the assemblage did not vary strongly among years (most similarity values were > 0.8), we still found a significant linear effect of year on the proportion of captures of Reed Buntings (Emberiza schoeniclus), i.e., the dominant species detected in our passerine community. The increasing loss of weight of Reed Buntings in the community was due to a progressive decrease in its abundance.

Conclusions

The structure and diversity of passerine community in Badina Escudera was not influenced by meteorological conditions at a local scale, suggesting that local weather would not have an impact on numbers of Reed Buntings in winter.

Abstract:
Background

Research activities have often been thought to potentially influence avian nesting success by increasing nest predation rates. Although recent studies of species building open nests and cavity nests suggest that research disturbance does not generally induce nest predation, whether it is also the case in species building domednests remains unknown. In birds, domed-nest species exist in about half of the passerine families, and research disturbance to the domed nests may differ from that to the nests of other types for their different nest structures.

Methods

We investigated if research activities affected nest predation rate by analyzing the relationships of the daily nest survival rate with the research activities at the egg and nestling stages of a domed-nest species, the Silverthroated Tit (Aegithalos glaucogularis).

Results

Our results showed that nest daily survival rate was significantly affected by the laying date and nest age during the egg stage, and by the hatching date only during the nestling stage. By contrast, there were no significant effects of research activities, in terms of visiting nests and filming nests, on the nest survival of the Silver-throated Tit at both the egg and nestling stages.

Conclusions

Our results coincide with the findings in species building other types of nests that research activities do not always have negative effects on avian nesting success.

Abstract:
Background

Although urbanization is threatening biodiversity worldwide, the increasing green urban spaces could harbor relatively high biodiversity. Therefore, how to maintain the biodiversity in urban ecosystem is crucial for sustainable urban planning and management, especially in arid and semiarid regions with relatively fragile environment and low biodiversity. Here, for the first time we linked species richness, phylogenetic and functional structure of bird assemblages in university campuses in northern China with plant species richness, glacial-interglacial climate change, contemporary climate, and anthropogenic factors to compare their relative roles in shaping urban bird diversity.

Methods

Bird surveys were conducted in 20 university campuses across Inner Mongolia, China. Ordinary least squares models and simultaneous autoregressive models were used to assess the relationships between bird species richness, phylogenetic and functional structure with environmental factors. Structural equation models were used to capture the direct and indirect effects of these factors on the three components of bird diversity.

Results

Single-variable simultaneous autoregressive models showed that mean annual precipitation was consistently a significant driver for bird species richness, phylogenetic and functional structure. Meanwhile, mean annual temperature and plant species richness were also significant predictors for bird species richness.

Conclusions

This study suggests that campuses with warmer and wetter climate as well as more woody plant species could harbor more bird species. In addition, wetter campuses tended to sustain over-dispersed phylogenetic and functional structure. Our findings emphasize the dominant effect of precipitation on bird diversity distribution in this arid and semiarid region, even in the urban ecosystem.

Abstract:
Background

Unlike resident birds, migratory birds are generally believed to have evolved to enhance flight efficiency; however, direct evidence is still scarce due to the difficulty of measuring the flight speed and mechanical power.

Methods

We studied the differences in morphology, flight kinematics, and energy cost between two passerines with comparable size, a migrant (Fringilla montifringilla, Brambling, BRAM), and a resident (Passer montanus, Eurasian Tree Sparrow, TRSP).

Results

The BRAM had longer wings, higher aspect ratio, lower wingbeat frequency, and stroke amplitude compared to the TRSP despite the two species had a comparable body mass. The BRAM had a significantly lower maximum speed, lower power at any specific speed, and thus lower flight energy cost in relative to the TRSP although the two species had a comparable maximum vertical speed and acceleration.

Conclusions

Our results suggest that adaptation for migration may have led to reduced power output and maximum speed to increase energy efficiency for migratory flight while residents increase flight speed and speed range adapting to diverse habitats.

Abstract:
Background

Conserving migratory birds is challenging due to their reliance on multiple distant sites at different stages of their annual life cycle. The concept of "flyway", which refers to all areas covered by the breeding, nonbreed- ing, and migrating of birds, provides a framework for international cooperation for conservation. In the same flyway, however, the migratory activities of the same species can differ substantially between seasons and populations. Clarifying the seasonal and population differences in migration is helpful for understanding migration ecology and for identifying conservation gaps.

Methods

Using satellite-tracking we tracked the migration of Whimbrels (Numenius phaeopus variegatus) from non- breeding sites at Moreton Bay (MB) and Roebuck Bay (RB) in Australia in the East Asian–Australasian Flyway. Mantel tests were used to analyze the strength of migration connectivity between the nonbreeding and breeding sites of MB and RB populations. Welch's t test was used to compare the migration activities between the two populations and between northward and southward migration.

Results

During northward migration, migration distance and duration were longer for the MB population than for the RB population. The distance and duration of the first leg flight during northward migration were longer for the MB population than for the RB population, suggesting that MB individuals deposited more fuel before departing from nonbreeding sites to support their longer nonstop flight. The RB population exhibited weaker migration connectivity (breeding sites dispersing over a range of 60 longitudes) than the MB population (breeding sites concentrating in a range of 5 longitudes in Far Eastern Russia). Compared with MB population, RB population was more dependent on the stopover sites in the Yellow Sea and the coastal regions in China, where tidal habitat has suffered dramatic loss. However, RB population increased while MB population decreased over the past decades, suggesting that loss of tidal habitat at stopover sites had less impact on the Whimbrel populations, which can use diverse habitat types. Different trends between the populations might be due to the different degrees of hunting pressure in their breeding grounds.

Conclusions

This study highlights that conservation measures can be improved by understanding the full annual life cycle of movements of multiple populations of Whimbrels and probably other migratory birds.

Abstract:
Background

The Common Pochard (Aythya ferina) (hereafter Pochard), a widespread and common freshwater diving duck in the Palearctic, was reclassified in 2015 from Least Concern to Vulnerable IUCN status based on rapid declines throughout its range. Analysis of its status, distribution and the potential causes for the decline in Europe has been undertaken, but there has never been a review of its status in the major part of its breeding range across Russia to the Pacific coast.

Methods

We reviewed the scientific literature and unpublished reports, and canvassed expert opinion throughout Russia to assess available knowledge about changes in the species distribution and abundance since the 1980s.

Results

While accepting available information may not be representative throughout the entire eastern range of the species, the review found marked declines in Pochard breeding abundance in the last two decades throughout European Russia. Pochard have also declined throughout Siberia. Declines throughout the steppe region seemed related to local drought severity in recent years, necessitating further research to confirm this climate link at larger spatial scales. Declines in the forest and forest-steppe regions appeared related to the major abandonment of fish farms in western Russia that had formerly provided habitat for breeding Pochard. However, hyper-eutrophication of shallow eutrophic lakes, cessation of grazing and haymaking in floodplain systems necessary to maintain suitable nesting habitat and disappearance of colonies of the Black-headed Gull (Chroicocephalus ridibundus) in a number of wetlands were also implicated. Increasing invasive alien predator species (e.g. American Mink Neovison vison and Raccoon Dog Nyctereutes procyonoides) and increasing spring hunting were also thought to contribute to declines. Reports of expansion in numbers and range only came from small numbers occurring in the Russian Far East, including on the border with China and the long-established isolated population on Kamchatka Peninsula.

Conclusions

Widespread declines throughout the eastern breeding range of the Pochard give continued cause for concern. Although we could address all the potential causal factors identified above by management interventions, we urgently need better information relating to key factors affecting site-specific Pochard breeding success and abundance, to be able to implement effective actions to restore the species to more favourable conservation status throughout its breeding range.

Abstract:
Background

While nest attentiveness plays a critical role in the reproductive success of avian species, nest attentiveness data with high temporal resolution is not available for many species. However, improvements in both video monitoring and temperature logging devices present an opportunity to increase our understanding of this aspect of avian behavior.

Methods

To investigate nest attentiveness behaviors and evaluate these technologies, we monitored 13 nests across two Common Tern (Sterna hirundo) breeding colonies with a paired video camera - temperature logger approach, while monitoring 63 additional nests with temperature loggers alone. Observations occurred from May to August of 2017 on Poplar (Chesapeake Bay, Maryland, USA) and Skimmer Islands (Isle of Wight Bay, Maryland, USA). We examined data respective to four times of day: Morning (civil dawn‒11:59), Peak (12:00‒16:00), Cooling (16:01‒civil dusk), and Night (civil dusk‒civil dawn).

Results

While successful nests had mostly short duration off-bouts and maintained consistent nest attentiveness throughout the day, failed nests had dramatic reductions in nest attentiveness during the Cooling and Night periods (p < 0.05) with one colony experiencing repeated nocturnal abandonment due to predation pressure from a Great Horned Owl (Bubo virginianus). Incubation appeared to ameliorate ambient temperatures during Night, as nests were significantly warmer during Night when birds were on versus off the nest (p < 0.05). Meanwhile, off-bouts during the Peak period occurred during higher ambient temperatures, perhaps due to adults leaving the nest during the hottest periods to perform belly soaking. Unfortunately, temperature logger data alone had limited ability to predict nest attentiveness status during shorter bouts, with results highly dependent on time of day and bout duration. While our methods did not affect hatching success (p > 0.05), video-monitored nests did have significantly lower clutch sizes (p < 0.05).

Conclusions

The paired use of iButtons and video cameras enabled a detailed description of the incubation behavior of COTE. However, while promising for future research, the logistical and potential biological complications involved in the use of these methods suggest that careful planning is needed before these devices are utilized to ensure data is collected in a safe and successful manner.

Abstract:
Background

Eurasian Collared Dove (Streptopelia decaocto) is a species distributed in the Eurasian continent and North Africa, and inhabiting mainly in Saitama Prefecture in Japan. Eurasian Collared Dove is one of the most prosperous invaders in the world, and Japanese Eurasian Collared Dove has also been introduced from overseas. The Japanese population has declined to one-hundredth over 30 years and is being protected. In this study, we analyzed its genetic diversity in order to understand the genetic differences between wild populations of Eurasian Collared Dove and those bred in zoos.

Methods

A sequence of about 1.9 kb mtDNA was determined for 20 wild Eurasian Collared Doves living in Saitama, Japan and 20 zoo-bred Eurasian Collared Doves, and population genetic analysis was performed.

Results

In the COI gene, 778 bp had the same sequence in all the 40 individuals examined, and no mutation sites could be confirmed. In the control region, two base substitution sites were confirmed in 1140 bp long sequence. Three haplotypes were detected in 20 individuals in wild, whereas all 20 zoo-bred individuals possessed the same haplotypes possessed in the wild population.

Conclusion

Haplotypes of zoo-bred individuals were also retained among the wild individuals, confirming that no genetic problems could occur if the zoo-bred individuals were released to the wild for the Japanese Eurasian Collared Dove propagation program.

Abstract:
Background

Power lines are amongst the main causes of mortality for birds globally. Electrocution drives the population dynamics of several threatened species of raptors, at local and global scales. Among the many solutions that have been tested to minimize this threat are supplemental perches; however, their efficiency has rarely been assessed.

Methods

We designed 43 transects in 4 districts in mainland Portugal to gather data from birds perching on pylons with or without supplemental perches. From 2015 to 2018, transects were surveyed by car at least once. We analyzed the factors driving the use of these supplemental perches, and we analyzed if there were differences in the perceived risk (calculated from measurements and not from field surveys) depending on whether the perching was on pylons with or without supplemental perches.

Results

We recorded 548 perches of 14 species. Weather conditions seemed to play a role in birds' choice of pylons with supplemental perches versus pylons without supplemental perches. Models also indicated a strong influence of observational conditions. The use of models showed us an important specific effect in the selection of supplemental perches where available: there are some species with a greater tendency to perch on supplemental perches, even when they use both pylons with and without supplemental perches. For most of the analyzed species and species groups, perceived risk was higher in pylons without supplemental perches compared to pylons with supplemental perches, but there were differences between species.

Conclusions

Supplemental perches may be a useful and efficient tool for mitigating raptor electrocution. However, there are many influential factors affecting their success, and their effectiveness with different species groups is not homogeneous. Some studies show higher electrocution rates for certain species and devices and thus, their efficacy must be validated. We propose a two-step validation process, first in controlled conditions and then in the field. A common protocol should be established to enable comparisons between studies.

Abstract:
Background

In the past decades, birdwatching as a hobby developed rapidly and produced ample scientific records that have aided conservation efforts. Therefore, it is increasingly attractive to promote avian research by providing data from birdwatching.

Methods

We compared records from 16 years of community birdwatching and a 1-year formalized bird monitoring in Suzhou, China to study the similarities and differences between the two monitoring methods.

Results

We showed that within the 325 bird species recorded by the two methods, an annual average of 108 species were documented by community science and 223 bird species were recorded by 1-year formalized monitoring. Measured by the number of bird species recorded per survey trip, the bird monitoring activity of community birdwatchers was significantly lower. Furthermore, the monitoring intensity of community birdwatching measured as the average survey trips per site each survey year was also lower than that of formalized bird monitoring. In addition, community birdwatchers preferred urban landscapes to rural areas.

Conclusions

Community birdwatching could record the majority of local birds and complements the professional surveys in avian research. Well designed and coordinated community science can be used to expand the knowledge about avian distribution and population dynamics. These findings are critical for the development of conservation science with regard to community involvement.

Abstract:
Background

Parrots (Psittacidae Family) are one of the most colorful groups of birds in the world, their colors produced both structurally and via unusual pigments (psittacofulvins). Most species are considered to be monogamous, and many have been viewed historically as sexually monomorphic and monochromatic. However, studies using morphometric analysis and spectrophotometric techniques have revealed sexual size dimorphism and also sexual plumage color dimorphism among some species. The Monk Parakeet (Myiopsitta monachus), a native parrot of South America, is an interesting species for the study of plumage coloration and size since it is considered sexually monochromatic and monomorphic. Furthermore, recent studies show that the Monk Parakeet has extra-bond paternity behavior and even breeding trios, which suggests that sexual selection may play an important role in this species, and that it might have sexually dimorphic plumage (albeit imperceptible by humans) and be dimorphic in size.

Methods

For the determination of plumage color we used spectrophotometry in the range of avian vision (300?700 nm) and performed a morphological analysis.

Results

Our spectrophotometric results indicate that the Monk Parakeet shows subtle sexual plumage color dimorphism in three (crown, nape and wing) out of twelve body regions. Similarly, our morphometric analysis showed that there are subtle sex differences in body size (bill and weight).

Conclusions

Although the Monk Parakeet shows extra-bond paternity and breeding trio behaviors which could increase sexual dimorphism, these behaviors occur among highly related individuals; perhaps the high rate of inbreeding is responsible for the attenuation of sexual plumage color dimorphism and sex differences in body size observed.

Abstract:
Background

Geographical distribution of endemic species and its multiple scale drivers are an important topic in biodiversity conservation, because these species are especially vulnerable to climate change and habitat degradation, and therefore have high conservation priority. Here, for the first time, we simultaneously linked glacial-interglacial climate change, contemporary climate, plant species richness and altitudinal range with endemic bird distribution in China.

Methods

Ordinary least squares models and simultaneous autoregressive models were used to assess the associations between endemic bird richness, endemic bird ratio and each explanatory variable. Structural Equation Models were also performed to test the direct and indirect effects of these variables on endemic bird richness and endemic bird ratio.

Results

Higher endemic bird richness and endemic bird ratio occurred in regions with stable glacial-interglacial temperature, i.e., southwest China. Plant species richness and altitudinal range were also positively correlated with endemic bird richness and endemic bird ratio. Glacial-interglacial temperature change, contemporary precipitation, plant species richness and altitudinal range were all included in the best combination of variables for endemic bird richness. Importantly, glacial-interglacial temperature change had strong direct effects on both endemic bird richness and endemic bird ratio, while plant species richness only had a direct effect on endemic bird richness.

Conclusions

Our results indicate that endemic birds in China concentrate in southwest regions where there are stable glacial-interglacial temperature, more plant species and larger altitudinal range. Notably, while stable climate has strong direct effects on both endemic bird richness and endemic bird ratio, plant species may affect endemic bird richness through its effect on overall bird species richness. Importantly, the recent anthropogenic activities have also significantly intensified in this region, which would pose huge challenge for biodiversity conservation in China.

Abstract:
Background

Nestling discrimination and feeding habits during brooding are important factors affecting host selection of parasitic birds. Some host birds can avoid being parasitized by discriminating their nestlings or feeding food not suitable for parasitic nestlings. Thrushes are common medium-sized birds with widespread distribution and an open nesting habit, but they are rarely parasitized. It remains controversial whether this is due to feeding habits and/or nestling discrimination.

Methods

In this study, we tested the nestling discrimination ability and feeding habits of Chestnut Thrushes (Turdus rubrocanus) which is distributed in China's multi-cuckoo parasitism system. Their nestling discriminability and feeding habits during brooding were studied by cross-fostering experiments and video recording to examine evolutionary restrictions on nestling discrimination and whether feeding habits are consistent with the growth of cuckoo nestlings.

Results

Our results indicate that Chestnut Thrushes using earthworms as the main brooding food can feed and maintain cuckoo nestlings and show no nestling discrimination.

Conclusions

The present study confirms that feeding habits cannot be regarded as the main factor affecting Chestnut Thrushes being rarely parasitized by cuckoos but suggests that egg rejection is likely to limit the evolution of nestling discrimination in thrushes.

Abstract:
Background

As one of the reproductive strategies adopted by bird species, variation in investment in egg production and its influencing factors are important and well-studied subjects. Intraclutch changes in egg size associated with laying order may reflect a strategy of "brood survival" or "brood reduction" adopted by female birds in different situations.

Methods

We conducted field studies on the breeding parameters of the Saxaul Sparrow (Passer ammodendri) in Gansu Province, China from 2010 to 2017, to clarify the factors affecting the egg investment and reproductive performance of this passerine species.

Results

Our results revealed significant differences in clutch size, egg size and the fledging rate between the first and second brood of Saxaul Sparrows and suggested that this typical desert species allocates more breeding resources to the more favourable second brood period, leading to greater reproductive output. Female body size presented a positive relationship with egg size, and male body size presented positive relationships with clutch size and hatchability. The females that started their clutches later laid more eggs, and hatchability and the fledging rate also increased with a later laying date in the first brood period. With successive eggs laid within the 5-egg clutches (the most frequent clutch size), egg size increased for the first three eggs and then significantly decreased.

Conclusions

Our results indicate that female Saxaul Sparrows increased egg investment because of good quality of paired males and good environmental conditions. The intraclutch variation of egg size suggests that this species inhabiting an arid environment adopts a "brood reduction" strategy.

Abstract:
Background

Gut microbiota play crucial roles in host health. Wild birds and domestic poultry often occupy sympatric habitats, which facilitate the mutual transmission of intestinal microbes. However, the distinct intestinal microbial communities between sympatric wild birds and poultry remain unknown. At present, the risk of interspecies transmission of pathogenic bacteria between wild and domestic host birds is also a research hotspot.

Methods

This study compared the intestinal bacterial communities of the overwintering Hooded Crane (Grus monacha) and the Domestic Goose (Anser anser domesticus) at Shengjin Lake, China, using Illumina high-throughput sequencing technology (Mi-Seq platform).

Results

Our results revealed that Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes and Chloroflexi were the dominant bacterial phyla in both hosts. The gut bacterial community composition differed significantly between sympatric Hooded Cranes and Domestic Geese. However, the hosts exhibited little variation in gut bacterial alpha-diversity. The relative abundance of Firmicutes was significantly higher in the guts of the Hooded Cranes, while the relative abundances of Actinobacteria, Proteobacteria, Bacteroidete and Chloroflexi were significantly higher in guts of Domestic Geese. Moreover, a total of 132 potential pathogenic operational taxonomic units (OTUs) were detected in guts of Hooded Cranes and Domestic Geese, and 13 pathogenic OTUs (9.8%) were found in both host guts. Pathogenic bacterial community composition and diversity differed significantly between hosts.

Conclusions

The results showed that the gut bacterial community composition differs significantly between sympatric Hooded Cranes and Domestic Geese. In addition, potential pathogens were detected in the guts of both Hooded Cranes and Domestic Geese, with 13 pathogenic OTUs overlapping between the two hosts, suggesting that more attention should be paid to wild birds and poultry that might increase the risk of disease transmission in conspecifics and other mixed species.

Abstract:
Background

Predicting the possibility of severe effects of global warming on animals is important for understanding the ecological consequences of climate change on ecosystem. Spring is the season during which birds have to physiologically prepare for the subsequent breeding period, and unusual spring temperature rising probably becomes a heat stress to the birds which have adapted to the low spring temperature. Therefore, it is necessary to understand the physiological effect of spring warming on the temperate birds.

Methods

Using the activities of blood anti-oxidative enzymes (SOD, CAT, GPx) and the concentrations of serum immunogloblins (IgA, IgY, IgM) as indicators, we compared the anti-oxidative and immune functions of Asian Short-toed Larks (Calandrella cheleensis) captured between 10 and 15 March, 2015 and housed under conditions of 21 ℃ and 16 ℃.

Results

The SOD activities of birds in 21 ℃ group were significantly lower than those in 16 ℃ group on all the treatment days. The CAT activities of the birds in 21 ℃ group were significantly lower than those in 16 ℃ group on the 1st, 5th, 13th, 17 treatment days. The GPx activities of the birds in 21 ℃ group were signifthicantly lower than those in 16 ℃ group on the 1st, 13th and 17th, but significantly higher on the 21st treatment day. The IgA, IgY and IgM concentrations of birds in 21 ℃ group were significantly lower than those in 16 ℃ group on all the treatment days.

Conclusions

This study shows that spring temperature rising negatively influences antioxibative and humoral immune functions, which indicates that spring climate warming might reduce the fitness of the temperate passerine birds which have adapted to the low spring temperature.

Abstract:
Background

Urban expansion has been identified as one of the leading drivers of biodiversity change or loss. For birds, urbanization is specifically related to survival, breeding success, and territory size. Understanding how different birds adjust territory size in response to urbanization is essential for their conservation in urban environments and to better understand why some species are lost and others persist under this condition. We evaluated the effect of urbanization on the territory size of an urban avoider species, White-eared Ground-Sparrow (Melozone leucotis), and an urban adapter species, House Wren (Troglodytes aedon), at five Costa Rican sites.

Methods

We measured the size of 30 ground-sparrow and 28 wren territories using a total of 296 h of observation. We followed each individual for at least 1 h per day for at least 2 days of two consecutive years, and geo-referenced their locations. Territory size was estimated using the minimum convex polygon method. We measured the urban surfaces (roads, buildings, any other paved area, soccer fields, lawns, and gardens with short grass) within territories.

Results

Ground-sparrow territories were larger at the highly urbanized site than at the non-urbanized site. Wren territories were larger at the low urbanized site than at the highly urbanized site. We found a positive relationship between urban surface and territory size for the ground-sparrow, but not for the wren.

Conclusions

Our results showed that not all birds adjust territory size in the same way in response to urbanization. We showed that urban avoiders probably need to defend larger territories in urban environments to find all the resources required to survive because urban environments may provide insufficient resources such as food or shelter. Urban adapters on the other hand defend smaller territories in urban environments because even small territories may provide sufficient resources. These results suggest specific behavioral adaptations developed by Neotropical birds inhabiting urban environments.

Abstract:
Background

The Oriental Stork (Ciconia boyciana) breeds in southeastern Siberia and parts of northeast China, and winters mainly in southeast China. Although the autumn migration pattern of Oriental Storks has been previously described, differences between spring and autumn migration travel speed in relation to wind assistance were unknown.

Methods

Using GPS/GSM transmitters, we tracked the full migrations of 18 Oriental Storks during 2015-2018 to compare differences in autumn and spring migration patterns, and combined the satellite telemetry data with the National Center for Environmental Prediction Reanalysis data to explain the relationship between 850 mbar wind vectors and seasonal differences in travel speed.

Results

Differences in tailwinds contributed to significant differences in daily average Oriental Storks travel speed in spring (258.11 ± 64.8 km/day) compared to autumn (172.23 ± 49.7 km/day, p < 0.001). Storks stopped significantly more often in autumn than spring (1.78 ± 1.1 versus 1.06 ± 0.9, p < 0.05), but stopover duration (15.52 ± 12.4 versus 16.30 ± 15.1 days, respectively, p = 0.3) did not differ significantly. Tailwinds at 850 mbar pressure level (extracted from the National Center of Environmental Prediction Reanalysis data archive) significantly affected daily flying speed during spring and autumn migration. Tailwind conditions in spring (mean 4.40 ± 5.6 m/s) were always more favourable than in autumn when they received no net benefit (0.48 ± 5.6 m/s, p < 0.001). Despite mean spring migration duration being less than autumn (27.52 ± 15.9 versus 32.77 ± 13.4 days, p = 0.17), large individual variation meant that this duration did not differ significantly from each other.

Conclusions

For long distance migratory soaring birds (such as storks), relative duration of spring and autumn migration likely relates to the interaction between imperative for earliest arrival to breeding grounds and seasonal meteorological conditions experienced en route.

Abstract:
Background

Cities differ from non-urban environments by the intensity, scale, and extent of anthropogenic pressures, which can drive the occurrence, physiology, and behavior of the organisms thriving in these settings. Traits as green cover often predict the occurrence patterns of bird species in urban areas. Yet, anthropogenic noise and artificial light at night (ALAN) could also limit the presence and disrupt the behavior of birds. However, there is still a dearth of knowledge about the influence of urbanization through noise and light pollution on nocturnal bird species ecology. In this study, we assessed the role of green cover, noise, and light pollution on the occurrence and vocal activity of the Mottled Owl (Ciccaba virgata) in the city of Xalapa (Mexico).

Methods

We obtained soundscape recordings in 61 independent sites scattered across the city of Xalapa using autonomous recording units. We performed a semi-automated acoustic analysis of the recordings, corroborating all Mottled Owl vocalizations. We calculated two measures of anthropogenic noise at each study site: daily noise (during 24 h) and masking noise (mean noise amplitude at night per site that could mask the owl's vocalizations). We further performed generalized linear models to relate green cover, ALAN, daily noise, and masking noise in relation to the owl's occurrence (i.e., detected, undetected). We also ran linear models to assess relationships among the beginning and ending of vocal activity with ALAN, and with the anthropogenic and masking noise levels at the moment of which vocalizations were emitted. Finally, we explored variations of the vocal activity of the Mottled Owl measured as vocalization rate across time.

Results

The presence of Mottled Owls increased with the size of green cover and decreased with increases in both artificial light at night and noise levels. At the temporal scale, green cover was positively related with the ending of the owl's vocal activity, while daily noise and ALAN levels were not related to the timing and vocal output (i.e., number of vocalizations). Furthermore, the Mottled Owl showed a marked peak of vocal activity before dawn than after dusk. Although anthropogenic noise levels varied significantly across the assessed time, we did not find an association between high vocal output during time periods with lower noise levels.

Conclusions

Spatially, green cover area was positively related with the presence of the Mottled Owl in Xalapa, while high noise and light pollution were related to its absence. At a temporal scale, daily noise and ALAN levels were not related with the timing and vocal output. This suggests that instead of environmental factors, behavioral contexts such as territoriality and mate interactions could drive the vocal activity of the Mottled Owl. Further studies need to incorporate a wider seasonal scale in order to explore the variation of different vocalizations of this species in relation to environmental and biological factors.

Abstract:
Background

Vast areas of lowland neotropical forest have regenerated after initially being cleared for agricultural purposes. The ecological value of regenerating second growth to forest-dwelling birds may largely depend on the age of the forest, associated vegetative structure, and when it is capable of sustaining avian demographics similar to those found in pristine forest.

Methods

To determine the influence of second growth age on bird demography, we estimated the annual survival of six central Amazonian bird species residing in pristine forest, a single 100 and a single 10 ha forest fragment, taking into consideration age of the surrounding matrix (i.e. regenerating forest adjacent to each fragment) as an explanatory variable.

Results

Study species exhibited three responses: arboreal, flocking and ant-following insectivores (Willisornis poecilinotus, Thamnomanes ardesiacus and Pithys albifrons) showed declines in survival associated with fragmentation followed by an increase in survival after 5 years of matrix regeneration. Conversely, Percnostola rufifrons, a gap-specialist, showed elevated survival in response to fragmentation followed by a decline after 5 years of regeneration. Lastly, facultative flocking and frugivore species (Glyphorynchus spirurus and Dixiphia pipra, respectively) showed no response to adjacent clearing and subsequent regeneration.

Conclusions

Our results in association with previous studies confirm that the value of regenerating forest surrounding habitat patches is dependent on two factors: ecological guild of the species in question and second growth age. Given the rapid increase in survival following succession, we suggest that the ecological value of young tropical forest should not be based solely on a contemporary snapshot, but rather, on the future value of mature second growth as well.

Abstract:
Background

Previous phylogenetic studies that include the four recognized species of Gallus have resulted in a number of distinct topologies, with little agreement. Several factors could lead to the failure to converge on a consistent topology, including introgression, incomplete lineage sorting, different data types, or insufficient data.

Methods

We generated three novel whole genome assemblies for Gallus species, which we combined with data from the published genomes of Gallus gallus and Bambusicola thoracicus (a member of the sister genus to Gallus). To determine why previous studies have failed to converge on a single topology, we extracted large numbers of orthologous exons, introns, ultra-conserved elements, and conserved non-exonic elements from the genome assemblies. This provided more than 32 million base pairs of data that we used for concatenated maximum likelihood and multispecies coalescent analyses of Gallus.

Results

All of our analyses, regardless of data type, yielded a single, well-supported topology. We found some evidence for ancient introgression involving specific Gallus lineages as well as modest data type effects that had an impact on support and branch length estimates in specific analyses. However, the estimated gene tree spectra for all data types had a relatively good fit to their expectation given the multispecies coalescent.

Conclusions

Overall, our data suggest that conflicts among previous studies probably reflect the use of smaller datasets (both in terms of number of sites and of loci) in those analyses. Our results demonstrate the importance of sampling large numbers of loci, each of which has a sufficient number of sites to provide robust estimates of gene trees. Low-coverage whole genome sequencing, as we did here, represents a cost-effective means to generate the very large data sets that include multiple data types that enabled us to obtain a robust estimate of Gallus phylogeny.

Abstract:
Background

The majority of European Common Terns (Sterna hirundo) migrate south along the western coast of Europe and Africa, while birds from eastern regions are known to cross the Mediterranean Sea from east to west or migrate along the eastern African coast. The migration route of north European terns wintering along the coast of western Africa was already described using geolocator data, while knowledge about movements of the European inland populations is based only on relatively scarce recoveries of ringed birds.

Methods

We used light-level geolocators in inland Common Tern colonies in Hungary and Croatia to study their migration route and to identify wintering areas along with stopover sites. Results revealed by geolocators were compared with recoveries of ringed birds.

Results

All tracked birds used the east African migration route with autumn stopovers at Lower Nile and in the southern part of the Red Sea, and short spring stopover in Israel. Terns wintered along Kenyan coasts and in the southern Mozambique Channel. Autumn migration lasted four times longer than spring migration.

Conclusions

This is the first geolocator study that describes the east African migration route of the Common Tern. Important stopover sites were identified. More studies of inland populations are needed to better elucidate tern winter movements.

Abstract:
Background

Understanding how overwintering birds choose foraging habitats is very important for conservation management. The overwintering Black-necked Crane (Grus nigricollis) feeds on crop remains in farmlands; thus, reasonable conservation management of this type of farmland that surrounds wetlands is critical for the overwintering populations of the Black-necked Crane; however, it is not clear how the Black-necked Crane chooses the foraging land in the farmland.

Methods

A thorough field positioning survey of all foraging sites in farmland areas around the Caohai Wetland and a sampling analysis of habitat selection by the Black-necked Crane were conducted during the winters from 2016-2017 and 2017-2018.

Results

Multiple factors contributed to the selection of foraging habitat in farmlands, i.e., food factors (crop remains and tillage methods) > human disturbance factors (distance to road and settlement) > topography factors (slope aspect), listed according to the strength of influence. Additionally, Black-necked Cranes tend to choose farmland sites where there was no machine tillage, the crop remains were > 500 g/m2, the distance to residences ranged from 100 to 500 m, the distance to roads ranged from 50 to 100 m, and the slopes exhibited western or eastern aspects. As the winters progressed, the volume of the edible crop remains declined, and the influences of the other main factors also changed, i.e., the factors of human disturbance (distance to road and settlement) became less important, while the effect of the food factor (crop remains) was strengthened. Thus, the foraging sites near the road became more important.

Conclusion

The farming area surrounding the Caohai Wetland is very important for the overwintering Black-necked Crane. Food factors and human disturbance factors are the main factors that influence the choice of feeding ground.

Abstract:
Background

The alteration and loss of habitats are two of the main threats that biodiversity conservation is currently facing up to. The present study describes the effects of a perturbation and restoration in a reedbed habitat on a bird assemblage. We studied the bird community of a wetland of central Spain between 1995 and 2009, during which time an anthropic perturbation altered the original structure of the habitat; subsequently, as a result of restoration works, the habitat returned to its original state.

Methods

We evaluated the effects on six population and physical parameters of the birds at three different phases of their life cycles (breeding, wintering and post-breeding migration seasons) before, during and after the habitat alteration. GLM was used to analyze the influence of three independent variables (year, perturbation phase and temperature).

Results

The relative abundance and the species richness values decreased when habitat was altered, but then recovered as a result of the regeneration works. This pattern was the clearest amongst specialist species. Breeding success also declined during the perturbation phase and then increased; likewise, the sex ratio changed given that the proportion of male birds increased when habitat was altered. These results are discussed in relation to changes on availability of resources in altered habitats, to the adaptive mechanisms in the exploitation of ecological requirements and to the selection of optimum and sub-optimum habitats by generalist and specialist species.

Conclusions

Ecosystem restoration can favour the recovery of population indexes of specialist passerines, although it depends on the efficiency of the type of restoration activity performed and on the complexity of the habitat.

Abstract:
Background

The habitat use and foraging behaviors of waterbirds are closely related to the distribution and abundance of their food resources. Reductions in food supply can cause waterbirds to shift their habitats and adjust their foraging behaviors to meet their nutritional requirements and increase fitness. Seasonal withdraw of the water levels in the river-connected lakes in the middle and lower Yangtze River floodplain provides abundant food resources for the wintering Greater White-fronted Goose (Anser albifrons). Sedge (Carex) meadows are critical foraging habitats for herbivorous waterbirds in the hydro-fluctuation belt, which changes with hydrological conditions and climate. This study aimed to examine the behavioral responses of the Greater White-fronted Goose to temporal- spatial changes of food availability in the Sedge meadows.

Methods

Fields surveys were carried out at Shengjin Lake from November 2017 to April 2018. According to the phenology of Shengjin Lake, we divided the wintering season into three periods. The food density, minimum temperature, food items, grass height, and number of foraging geese were surveyed, and samples of the foraging behavior were collected. We analyzed the relationship of the foraging behavior and habitat use relative to the food resources, using correlation and linear regression analyses.

Results

Along with the temporal-spatial variation and exploitation of food resources, the food abundance and items varied widely among the foraging sites. Over the whole wintering period, the foraging habitat with the highest utilization rate was the meadows, followed by the paddy fields, and then mudflats. Furthermore, the utilization of the meadows showed a bimodal distribution trend, while the paddy fields showed a unimodal trend, and a decreasing trend was seen in the mudflats over the whole wintering period. The results of the generalized linear model showed that the foraging rate was related to the food density and grass height, with a linearly increasing trend during the winter.

Conclusions

With the change of food resources in the three habitats, the habitats used by the Greater White-fronted Geese shifted from meadows in the hydro-fluctuation belt to the paddy fields, and then back to the meadows. The time budget for foraging activities increased correspondingly, and there was an increase in the foraging rate to compensate for food shortages.

Abstract:
Background

Phylogeographical patterns and population dynamics are usually interpreted by environmental disturbances and geographic barriers of the past. However, sister species may exhibit disparate patterns of genetic structures and population dynamics due to their habitat preference and altitude segregation. In this study, we tested how species-specific altitude habitat affected phylogeographical patterns in two sister snowcock species, Tibetan (Tetraogallus tibetanus) and Himalayan Snowcocks (T. himalayensis).

Methods

A panel of seven microsatellite loci and a fragment of Mitochondrial DNA Control Region were used to investigate genetic structures and population dynamics in hope of revealing the underlying evolutionary processes through the identification of possible past demographic events.

Results

Our results suggest that T. himalayensis showed a significant phylogeographical signal in mtDNA (FST = 0.66, p < 0.001) and microsatellite (FST = 0.11, p < 0.001) data and is stable during the glacial-interglacial cycles in the Pleistocene and followed demographic contraction until 0.003 million years (Mys) ago. The phylogeographical signal of T. tibetanus is lower than the level of genetic difference among populations in mtDNA (FST = 0.41, p < 0.001) and microsatellite (FST = 0.09, p < 0.001) data, likely benefiting from stable habitats over a long period of time. T. tibetanus has been experiencing expansion since 0.09 Mys ago. However, an abnormally haplotype H9 from T. himalayensis clustering with T. tibetanus was spotted.

Conclusion

Our results indicate that differences in habitat preference and altitude specialities were reflected in the genetic structure patterns and population dynamics of these two species. These dissimilarities in life history traits might have affected the dispersal and survival abilities of these two species differently during environmental fluctuations. The results of this study also enriched our knowledge on population differentiation and connectivity in high altitude mountain ecosystems.

Letter to the Editor
Abstract:

In this study, we report an unusual homing behavior of the Sichuan Partridge (Arborophila rufipectus) at the Laojunshan National Nature Reserve, Sichuan Province, China. Hen Sichuan Partridges led the chicks back to the nests where they hatched in the evening and roosted there over night. This behavior lasted 6.7 ± 4.3 nights (range = 1–15; n = 13) after the chicks hatched. At this stage, the hens became very vigilant to predators and human disturbance. If disturbed, they often abandoned the nests immediately and no longer returned thereafter. The ambient temperature at night during the early brooding period of Sichuan Partridge at our study site was ~ 12.4 ℃. Our findings suggest that hen Sichuan Partridges may make trade-offs between nest predation risks versus the thermoregulatory needs of their young.

Abstract:

The life history of birds dictates their activities and is crucial to population success. However, the life history traits of only one-third of the world's bird species have been described; the rest are poorly understood. We studied the breeding ecology of the Yellow-bellied Warbler (Abroscopus superciliaris) and documented reproductive information throughout the egg and nestling periods. The data included natural nest sites, nest components, nest size, egg laying dates and time, egg morph, egg size, clutch size, egg incubation, nestling brooding and feeding, nestling morph and growth, and reproductive outcome. This study provided particular information of breeding ecology that has not been reported before in the Yellow-bellied Warbler.

Abstract:

We report for the first time the occurrence of heteroplasmy in Grey Partridge (Perdix perdix) revealed by means of two mitochondrial fragments. The possible serious biological and management implications of this exception to unilateral inheritance of mtDNA were underlined.

Review
Abstract:

The mutually antagonistic processes producing adaptations and counter-adaptations in avian brood parasites and their hosts provide a model system for the study of coevolution; this topic has long been an area of focus in ornithology and evolutionary biology. Although there is an extensive body of literature dealing with avian brood parasitism, few empirical studies have considered the effects of the coevolutionary processes associated with brood parasitism on the acoustic characteristics of parent–offspring communication. Under the strong selection pressures associated with brood parasitism, parasitic birds may, for instance, produce deceptive songs. The host may in turn evolve the ability to recognize these sounds as deceptive. At present, the mechanisms underlying the different competitive strategies employed by hosts and parasitic birds remain unclear. Here, we reviewed previous studies that investigated acoustic traits in scenarios of brood parasitism, highlighting possible adaptive functions. Using a meta-analysis, we identified no heterogeneity among studies of begging call adaptations in parasitic nestlings. However, our results may have been affected by the small number of applicable papers available for analysis. Our meta-analysis also suggested that studies of acoustic communication and transmission in adult hosts were highly heterogenous, suggesting that research methods were inconsistent among studies. Finally, we identified knowledge gaps and proposed several lines of future research.

Abstract:
Background

True cicadas (Cicadidae) are large and temporarily abundant insects. Their availability may produce demographic and behavioural effects on bird populations, as happens with forest avifauna feeding on periodical cicadas in North America. In Europe, the Near East and North Africa, knowledge of cicada predation by birds is sparse.

Methods

To help fill this gap, I consulted Cramp's Birds of the Western Palearctic, conducted a search of online databases and used search engines to generate a database of Western Palearctic birds known to eat cicadas.

Results

A total of 105 species (16% of those occurring in the region) belonging to 13 orders, and comprising 20 of the 33 passerine families, were found to consume cicadas. I estimated that 69 of these bird species are known to consume cicadas within the limits of the Western Palearctic. Many terrestrial birds predate on cicadas, preferably on adults. Avian predators include cuckoos, owls, bee-eaters, woodpeckers, falcons, reed-warblers, larks, crows and jays, buntings, shrikes, pipits and wagtails, flycatchers and chats, tits, sparrows, leaf-warblers, starlings, warblers and thrushes, but also terns and gulls. Nymphs are consumed by some passerines, owls and herons. Cicadas can make up as much as 70% of food items delivered to nestlings. Analysis of stomach contents and neck collar samples are the most common methods used in diet studies.

Conclusions

Available knowledge is biased towards species that have been more intensively studied, and often lack proper quantification of prey items. More studies about the relative importance of cicadas as prey for birds in the Western Palearctic are needed. I suggest using non-invasive studies based on pellets and droppings and prioritizing declining bird species.

Methodology
Abstract:
Background

Accurate estimation of nestlings' age is essential in avian demography studies as well as in population ecology and conservation. For example, it can be useful for synchronizing nest visits with events of particular interest, such as the age at which young can be safely ringed, or in choosing the best period to attain the most accurate calculation of laying or hatching dates.

Methods

We constructed a photographic guide for aging European Bee-eaters (Merops apiaster) nestlings to 3-day age classes and evaluated the aging method by performing a validation exercise with several observers with no previous experience in aging bee-eater nestlings.

Results

The aging guide for bee-eater nestlings allowed estimating age to within 3 days with an average accuracy of 0.85. We found the optimal period for aging nestlings was between days 13-18 (with accuracy between 0.94 and 0.99), during which the status of feather development was more easily distinguishable from the preceding and subsequent age classes. During the first 3 days after hatching, nestlings could also be aged with high accuracy (0.93). The small size of the nestling in relation to the eggs and the nestling's inability to raise its head during these first days allowed for good discrimination from the subsequent age class. Between days 25 and 28, nestlings were correctly aged in only half of assignments (0.55 sensitivity) and nestlings belonging to class 7 (days 7-9) were the least correctly identified (0.38 sensitivity). However, by visiting the nests at 12 days intervals it is possible to achieve the highest accuracy in age estimation with the smallest disturbance and logistic investment.

Conclusions

This study highlighted how indirect methods and a simple protocol can be established and employed to quickly estimate nestling age in cases where handling nestlings is challenging or impossible, while minimizing disturbance in and around the nest.