Volume 11 Issue 1
Apr.  2020
Turn off MathJax
Article Contents
Rong Fu, Xingjia Xiang, Yuanqiu Dong, Lei Cheng, Lizhi Zhou. 2020: Comparing the intestinal bacterial communies of sympatric wintering Hooded Crane (Grus monacha) and Domestic Goose (Anser anser domesticus). Avian Research, 11(1): 13. doi: 10.1186/s40657-020-00195-9
Citation: Rong Fu, Xingjia Xiang, Yuanqiu Dong, Lei Cheng, Lizhi Zhou. 2020: Comparing the intestinal bacterial communies of sympatric wintering Hooded Crane (Grus monacha) and Domestic Goose (Anser anser domesticus). Avian Research, 11(1): 13. doi: 10.1186/s40657-020-00195-9

Comparing the intestinal bacterial communies of sympatric wintering Hooded Crane (Grus monacha) and Domestic Goose (Anser anser domesticus)

doi: 10.1186/s40657-020-00195-9

the National Natural Science Foundation of China 31772485

the National Natural Science Foundation of China 31801989

More Information
  • Corresponding author: Lizhi Zhou, zhoulz@ahu.edu.cn
  • Received Date: 21 Dec 2019
  • Accepted Date: 06 Apr 2020
  • Publish Date: 30 Apr 2020
  • Background Gut microbiota play crucial roles in host health. Wild birds and domestic poultry often occupy sympatric habitats, which facilitate the mutual transmission of intestinal microbes. However, the distinct intestinal microbial communities between sympatric wild birds and poultry remain unknown. At present, the risk of interspecies transmission of pathogenic bacteria between wild and domestic host birds is also a research hotspot.
    Methods This study compared the intestinal bacterial communities of the overwintering Hooded Crane (Grus monacha) and the Domestic Goose (Anser anser domesticus) at Shengjin Lake, China, using Illumina high-throughput sequencing technology (Mi-Seq platform).
    Results Our results revealed that Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes and Chloroflexi were the dominant bacterial phyla in both hosts. The gut bacterial community composition differed significantly between sympatric Hooded Cranes and Domestic Geese. However, the hosts exhibited little variation in gut bacterial alpha-diversity. The relative abundance of Firmicutes was significantly higher in the guts of the Hooded Cranes, while the relative abundances of Actinobacteria, Proteobacteria, Bacteroidete and Chloroflexi were significantly higher in guts of Domestic Geese. Moreover, a total of 132 potential pathogenic operational taxonomic units (OTUs) were detected in guts of Hooded Cranes and Domestic Geese, and 13 pathogenic OTUs (9.8%) were found in both host guts. Pathogenic bacterial community composition and diversity differed significantly between hosts.
    Conclusions The results showed that the gut bacterial community composition differs significantly between sympatric Hooded Cranes and Domestic Geese. In addition, potential pathogens were detected in the guts of both Hooded Cranes and Domestic Geese, with 13 pathogenic OTUs overlapping between the two hosts, suggesting that more attention should be paid to wild birds and poultry that might increase the risk of disease transmission in conspecifics and other mixed species.


  • loading
  • Alm EW, Daniels-Witt QR, Learman DR, Ryu H, Jordan DW, Gehring TM, et al. Potential for gulls to transport bacteria from human waste sites to beaches. Sci Total Environ. 2018;615:123-30. doi: 10.1016/j.scitotenv.2017.09.232
    Bortoluzzi C, Lumpkins B, Mathis GF, Franca M, King WD, Graugnard DE, et al. Zinc source modulates intestinal inflammation and intestinal integrity of broiler chickens challenged with coccidia and Clostridium perfringens. Poult Sci. 2019;98:2211-9. doi: 10.3382/ps/pey587
    Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev. 2010;23:382-98. doi: 10.1128/CMR.00073-09
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QⅡME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-6. doi: 10.1038/nmeth.f.303
    Caron A, De Garine-Wichatitsky M, Gaidet N, Chiweshe N, Cumming GS. Estimating dynamic risk factors for pathogen transmission using community-level bird census data at the wildlife/domestic interface. Ecol Soc. 2010;15:299-305. http://www.researchgate.net/publication/232068252_Estimating_Dynamic_Risk_Factors_for_Pathogen_Transmission_Using_Community-Level_Bird_Census_Data_at_the_WildlifeDomestic_Interface
    Chen SX, Wang Y, Chen FY, Yang HC, Gan MH, Zheng SJ. A highly pathogenic strain of Staphylococcus sciuri caused fatal exudative epidermitis in piglets. PLoS ONE. 2007;2:1-6.
    Chen JY, Zhou LZ, Zhou B, Xu RX, Zhu WZ, Xu WB. Seasonal dynamics of wintering waterbirds in two shallow lakes along Yangtze River in Anhui Province. Zool Res. 2011;32:540-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwxyj201105012
    Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163:1360-74. doi: 10.1016/j.cell.2015.11.004
    Craven SE, Stern NJ, Line E, Bailey JS, Cox NA, Fedorka-Cray P. Determination of the incidence of Salmonella spp., Campylobacter jejuni, and Clostridium perfringens in wild birds near broiler chicken houses by sampling intestinal droppings. Avian Dis. 2000;44:715-20. doi: 10.2307/1593118
    Curtis SK, Kothary MH, Blodgett RJ, Raybourne RB, Ziobro GC, Tall BD. Rugosity in Grimontia hollisae. Appl Environ Microbiol. 2007;73:1215-24. doi: 10.1128/AEM.02553-06
    Delaunay E, Abat C, Rolain JM. Enterococcus cecorum human infection. France. New Microbes New Infect. 2015;7:50-1. doi: 10.1016/j.nmni.2015.06.004
    Deng P, Swanson KS. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br J Nutr. 2015;113:S6-17. doi: 10.1017/S0007114514002943
    Desai SS, Harrison RA, Murphy MD. Capnocytophaga ochracea causing severe sepsis and purpura fulminans in an immunocompetent patient. J Infect. 2007;54:e107-109. doi: 10.1016/j.jinf.2006.06.014
    Dewar ML, Arnould JPY, Dann P, Trathan P, Groscolas R, Smith S. Interspecific variations in the gastrointestinal microbiota in penguins. MicrobiologyOpen. 2013;2:195-204. doi: 10.1002/mbo3.66
    Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67:345-66. http://aob.oxfordjournals.org/external-ref?access_num=10.2307/2963459&link_type=DOI
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460-1. doi: 10.1093/bioinformatics/btq461
    Ekong PS, Fountain-Jones NM, Alkhamis MA. Spatiotemporal evolutionary epidemiology of H5N1 highly pathogenic avian influenza in West Africa and Nigeria, 2006-2015. Transbound Emerg Dis. 2018;65:e70-82. doi: 10.1111/tbed.12680
    Erbasan F. Brain abscess caused by Micrococcus luteus in a patient with systemic lupus erythematosus: case-based review. Rheumatol Int. 2018;38:2323-8. doi: 10.1007/s00296-018-4182-2
    Fan PX, Bian BL, Teng L, Nelson CD, Driver J, Elzo MA, et al. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. ISME J. 2020;14:302-17. doi: 10.1038/s41396-019-0529-2
    Fang J, Wang ZH, Zhao SQ, Li YK, Tang ZY, Yu D, et al. Biodiversity changes in the lakes of the Central Yangtze. Front Ecol Environ. 2006;4:369-77. doi: 10.1890/1540-9295(2006)004[0369:BCITLO]2.0.CO;2
    Ferraz V, McCarthy K, Smith D, Koornhof HJ. Rothia dentocariosa endocarditis and aortic root abscess. J Infect. 1998;37:292-5. doi: 10.1016/S0163-4453(98)92231-9
    Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6:121-31. doi: 10.1038/nrmicro1817
    Fox AD, Cao L, Zhang Y, Barter M, Zhao MJ, Meng FJ, et al. Declines in the tuber feeding waterbird guild at Shengjin Lake national nature reserve, China-a barometer of submerged macrophyte collapse. Aquat Conserv-Mar Freshw Ecosyst. 2011;21:82-91. doi: 10.1002/aqc.1154
    Galen SC, Witt CC. Diverse avian malaria and other haemosporidian parasites in Andean house wrens: evidence for regional co-diversification by host switching. J Avian Biol. 2014;45:374-86. doi: 10.1111/jav.00375
    Grond K, Ryu H, Baker AJ, Domingo JWS, Buehler DM. Gastro-intestinal microbiota of two migratory shorebird species during spring migration staging in Delaware Bay, USA. J Ornithol. 2014;155:969-77. doi: 10.1007/s10336-014-1083-3
    Grond K, Lanctot RB, Jumpponen A, Sandercock BK. Recruitment and establishment of the gut microbiome in arctic shorebirds. FEMS Microbiol Ecol. 2017;93:142.
    Grond K, Sandercock BK, Jumpponen A, Zeglin LH. The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol. 2018;49:e01788. doi: 10.1111/jav.01788
    He SD, Zhang ZY, Sun HJ, Zhu YC, Cao XD, Ye YK, et al. Potential effects of rapeseed peptide Maillard reaction products on aging-related disorder attenuation and gut microbiota modulation in d-galactose induced aging mice. Food Funct. 2019;10:4291-303. doi: 10.1039/C9FO00791A
    Hird SM, Carstens BC, Cardiff S, Dittmann DL, Brumfield RT. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood parasitic Brown-headed Cowbird (Molothrus ater). PeerJ. 2014;2:e321. doi: 10.7717/peerj.321
    Hsueh PR, Teng LJ, Yang PC, Wang SK, Chang SC, Ho SW, et al. Bacteremia caused by Arcobacter cryaerophilus 1B. J Clin Microbiol. 1997;35:489-91. doi: 10.1128/JCM.35.2.489-491.1997
    Jiao SW, Guo YM, Huettmann F, Lei GC. Nest-site selection analysis of hooded crane (Grus monacha) in northeastern china based on a multivariate ensemble model. Zool Sci. 2014;31:430-7. doi: 10.2108/zs130248
    Jourdain E, Gauthier-Clerc M, Bicout DJ, Sabatier P. Bird migration routes and risk for pathogen dispersion into western mediterranean wetlands. Emerg Infect Dis. 2007;13:365-72. doi: 10.3201/eid1303.060301
    Jung A, Chen LR, Suyemoto MM, Barnes HJ, Borst LB. A review of Enterococcus cecorum infection in poultry. Avian Dis. 2018;62:261-71. doi: 10.1637/11825-030618-Review.1
    Kira J, Isobe N. Helicobacter pylori infection and demyelinating disease of the central Nervous System. J Neuroimmunol. 2019;329:14-9. doi: 10.1016/j.jneuroim.2018.06.017
    Koziel N, Kukier E, Kwiatek K, Goldsztejn M. Clostridium perfringens-epidemiological importance and diagnostics. Med Weter. 2019;75:265-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f53b33aa36a7f426d075fc3bc3789750
    LaFrentz BR, Garcia JC, Waldbieser GC, Evenhuis JP, Loch TP, Liles MR, et al. Identification of four distinct phylogenetic groups in Flavobacterium columnare with fish host associations. Front Microbiol. 2018;9:452-65. doi: 10.3389/fmicb.2018.00452
    Lalitha P, Srinivasan M, Prajna V. Rhodococcus ruber as a cause of keratitis. Cornea. 2006;25:238-9. doi: 10.1097/01.ico.0000170690.59960.8c
    Lan PTN, Hayashi H, Sakamoto M, Benno Y. Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiol Immunol. 2002;46:371-82. doi: 10.1111/j.1348-0421.2002.tb02709.x
    Lee SH, Kim KK, Rhyu IC, Koh S, Lee DS, Choi BK. Phenol/water extract of Treponema socranskii subsp. socranskii as an antagonist of Toll-like receptor 4 signalling. Microbiology. 2006;152:535-46. doi: 10.1099/mic.0.28470-0
    Li G, Du XS, Zhou DF, Li CG, Huang LB, Zheng QK, et al. Emergence of pathogenic and multiple-antibiotic-resistant Macrococcus caseolyticus in commercial broiler chickens. Transbound Emerg Dis. 2018;65:1605-14. doi: 10.1111/tbed.12912
    Loy A, Pfann C, Steinberger M, Hanson B, Herp S, Brugiroux S, et al. Lifestyle and horizontal gene transfer-mediated evolution of Mucispirillum schaedleri, a core member of the murine gut microbiota. Msystems. 2017;2:e00171. http://europepmc.org/articles/PMC5285517/
    IUCN. The IUCN Red List of Threatened Species. 2020. Version 2019-3. https://www.iucnredlist.org.
    Morgavi DP, Rathahao-Paris E, Popova M, Boccard J, Nielsen KF, Boudra H. Rumen microbial communities influence metabolic phenotypes in lambs. Front Microbiol. 2015;6:1060. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004602511
    Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970-4. doi: 10.1126/science.1198719
    Murakami Y, Hanazawa S, Tanaka S, Iwahashi H, Yamamoto Y, Fujisawa S. A possible mechanism of maxillofacial abscess formation: involvement of Porphyromonas endodontalis lipopolysaccharide via the expression of inflammatory cytokines. Oral Microbiol Immunol. 2001;16:321-5. doi: 10.1034/j.1399-302X.2001.160601.x
    Nejrup RG, Licht TR, Hellgren LI. Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice. Sci Rep. 2017;7:3975. doi: 10.1038/s41598-017-04298-0
    Nielsen HL. First report of Actinomyces europaeus bacteraemia result from a breast abscess in a 53-year-old man. New Microbes New Infect. 2015;7:21-2. doi: 10.1016/j.nmni.2015.05.001
    Nocera FP, Papulino C, Del Prete C, Palumbo V, Pasolini MP, De Martino L. Endometritis associated with Enterococcus casseliflavus in a mare: a case report. Asian Pac Trop Biomed. 2017;7:760-2. doi: 10.1016/j.apjtb.2017.07.016
    Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. Version 2.0-2. 2010.
    Pantin-Jackwood MJ, Costa-Hurtado M, Shepherd E, DeJesus E, Smith D, Spackman E, et al. Pathogenicity and transmission of H5 and H7 highly pathogenic avian influenza viruses in mallards. J Virol. 2016;90:9967-82. doi: 10.1128/JVI.01165-16
    Pate M, Zolnir-Dovc M, Kusar D, Krt B, Spicic S, Cvetnic Z, et al. The first report of Mycobacterium celatum isolation from domestic pig (Sus scrofa domestica) and roe deer (Capreolus capreolus) and an overview of human infections in Slovenia. Vet Med Int. 2011;2011:432954. http://pubmedcentralcanada.ca/pmcc/articles/PMC3103848/?lang=fr
    Peng WJ, Dong B, Zhang SS, Huang H, Ye XK, Chen LN, et al. Research on rare cranes population response to land use change of nature wetland. J Indian Soc Remote Sens. 2018;46:1795-803. doi: 10.1007/s12524-018-0838-3
    Perofsky AC, Lewis RJ, Meyers LA. Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. ISME J. 2019;13:50-63. doi: 10.1038/s41396-018-0251-5
    Ramey AM, Pearce JM, Flint PL, Ip HS, Derksen DV, Franson JC, et al. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: examining the evidence through space and time. Virology. 2010;401:179-89. doi: 10.1016/j.virol.2010.02.006
    Reed C, Bruden D, Byrd KK, Veguilla V, Bruce M, Hurlburt D, et al. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza a (H5N1) virus in Alaskan residents. Influenza Other Resp. 2014;8:516-23. doi: 10.1111/irv.12253
    Ruiu L. Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects. 2013;4:476-92. doi: 10.3390/insects4030476
    Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, et al. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun. 2015;6:8285. doi: 10.1038/ncomms9285
    Scheid PL, Lam TT, Sinsch U, Balczun C. Vermamoeba vermiformis as etiological agent of a painful ulcer close to the eye. Parasitol Res. 2019;118:1999-2004. doi: 10.1007/s00436-019-06312-y
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife. 2013;2:e01202. doi: 10.7554/eLife.01202
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:60. doi: 10.1186/gb-2011-12-6-r60
    Smith PA, Pizarro P, Ojeda P, Contreras J, Oyanedel S, Larenas J. Routes of entry of Piscirickettsia salmonis in rainbow trout Oncorhynchus mykiss. Dis Aquat Organ. 1999;37:165-72. doi: 10.3354/dao037165
    Stanley D, Denman SE, Hughes RJ, Geier MS, Crowley TM, Chen HL, et al. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl Microbiol Biotechnol. 2012;96:1361-9. doi: 10.1007/s00253-011-3847-5
    Stanley D, Hughes RJ, Moore RJ. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol. 2014;98:4301-10. doi: 10.1007/s00253-014-5646-2
    Speirs LBM, Rice DTF, Petrovski S, Seviour RJ. The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge. Front Microbiol. 2019;10:2015. doi: 10.3389/fmicb.2019.02015
    Spence C, Wells WG, Smith CJ. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: regulation by carbon source and oxygen. J Bacteriol. 2006;188:4663-72. doi: 10.1128/JB.00125-06
    Vendrell D, Balcazar JL, Ruiz-Zarzuela I, de Blas I, Girones O, Muzquiz JL. Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis. 2006;29:177-98. doi: 10.1016/j.cimid.2006.06.003
    Venugopal AA, Szpunar S, Johnson LB. Risk and prognostic factors among patients with bacteremia due to Eggerthella lenta. Anaerobe. 2012;18:475-8. doi: 10.1016/j.anaerobe.2012.05.005
    Waite DW, Eason DK, Taylor MW. Influence of hand rearing and bird age on the fecal microbiota of the critically endangered kakapo. Appl Environ Microbiol. 2014;80:4650-8. doi: 10.1128/AEM.00975-14
    Wilkinson TJ, Cowan AA, Vallin HE, Onime LA, Oyama LB, Cameron SJ, et al. Characterization of the microbiome along the gastrointestinal tract of growing turkeys. Front Microbiol. 2017;8:1-11. http://cn.bing.com/academic/profile?id=755573459604ebfbd4b2deafa8d4e065&encoded=0&v=paper_preview&mkt=zh-cn
    Wise MG, Siragusa GR. Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J Appl Microbiol. 2007;102:1138-49. http://www.ncbi.nlm.nih.gov/pubmed/17381758/
    Xiang XJ, Zhang FL, Fu R, Yan SF, Zhou LZ. Significant differences in bacterial and potentially pathogenic communities between sympatric hooded crane and greater white-fronted goose. Front Microbiol. 2019;10:163. doi: 10.3389/fmicb.2019.00163
    Xiong JB, Wang K, Wu JF, Qiuqian LL, Yang KJ, Qian YX, et al. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl Microbiol Biotechnol. 2015;99:6911-9. doi: 10.1007/s00253-015-6632-z
    Yang L, Zhou LZ, Song YW. The effects of food abundance and disturbance on foraging flock patterns of the wintering hooded crane (Grus monacha). Avian Res. 2015;6:15. doi: 10.1186/s40657-015-0024-z
    Yang MJ, Song H, Sun LN, Yu ZL, Hu Z, Wang XL, et al. Effect of temperature on the microflora community composition in the digestive tract of the veined rapa whelk (Rapana venosa) revealed by 16S rRNA gene sequencing. Comp Biochem Phys D. 2019;29:145-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c5f37e07815d1725306cc40506a4f07
    Zhao LL, Wang G, Siegel P, He C, Wang HZ, Zhao WJ, et al. Quantitative genetic background of the host influences gut microbiomes in chickens. Sci Rep. 2013;3:1163. doi: 10.1038/srep01163
    Zhu WF, Wei HJ, Chen L, Qiu RL, Fan ZY, Hu B, et al. Characterization of host plasminogen exploitation of Pasteurella multocida. Microb Pathog. 2019;129:74-7. doi: 10.1016/j.micpath.2019.01.044
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1031) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint