Volume 11 Issue 1
Apr.  2020
Turn off MathJax
Article Contents
Bei An, Lixun Zhang, Yutao Wang, Sen Song. 2020: Comparative phylogeography of two sister species of snowcock: impacts of species-specific altitude preference and life history. Avian Research, 11(1): 1. doi: 10.1186/s40657-019-0187-0
Citation: Bei An, Lixun Zhang, Yutao Wang, Sen Song. 2020: Comparative phylogeography of two sister species of snowcock: impacts of species-specific altitude preference and life history. Avian Research, 11(1): 1. doi: 10.1186/s40657-019-0187-0

Comparative phylogeography of two sister species of snowcock: impacts of species-specific altitude preference and life history

doi: 10.1186/s40657-019-0187-0
Funds:

the Strategic Priority Research Program of Chinese Academy of Sciences XDA2010010103

National Natural Science Foundation of China 31372195

National Natural Science Foundation of China 31772436

the Open Foundation of Research Institute of Qilian Mountains, Lanzhou University 

More Information
  • Background

    Phylogeographical patterns and population dynamics are usually interpreted by environmental disturbances and geographic barriers of the past. However, sister species may exhibit disparate patterns of genetic structures and population dynamics due to their habitat preference and altitude segregation. In this study, we tested how species-specific altitude habitat affected phylogeographical patterns in two sister snowcock species, Tibetan (Tetraogallus tibetanus) and Himalayan Snowcocks (T. himalayensis).

    Methods

    A panel of seven microsatellite loci and a fragment of Mitochondrial DNA Control Region were used to investigate genetic structures and population dynamics in hope of revealing the underlying evolutionary processes through the identification of possible past demographic events.

    Results

    Our results suggest that T. himalayensis showed a significant phylogeographical signal in mtDNA (FST = 0.66, p < 0.001) and microsatellite (FST = 0.11, p < 0.001) data and is stable during the glacial-interglacial cycles in the Pleistocene and followed demographic contraction until 0.003 million years (Mys) ago. The phylogeographical signal of T. tibetanus is lower than the level of genetic difference among populations in mtDNA (FST = 0.41, p < 0.001) and microsatellite (FST = 0.09, p < 0.001) data, likely benefiting from stable habitats over a long period of time. T. tibetanus has been experiencing expansion since 0.09 Mys ago. However, an abnormally haplotype H9 from T. himalayensis clustering with T. tibetanus was spotted.

    Conclusion

    Our results indicate that differences in habitat preference and altitude specialities were reflected in the genetic structure patterns and population dynamics of these two species. These dissimilarities in life history traits might have affected the dispersal and survival abilities of these two species differently during environmental fluctuations. The results of this study also enriched our knowledge on population differentiation and connectivity in high altitude mountain ecosystems.

     

  • loading
  • Adeli, Ma M, Hairoula, Wang Z. The ecological habits and characteristics of snowcock in the southern part of Bogeda, Tianshan Mountains. Arid Zone Res. 1997;14:84-7 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHQJ199701015.htm
    An B, Zhang LX, Browne S, Liu NF, Ruan LZ, Song S. Phylogeography of tibetan snowcock (Tetraogallus tibetanus) in Qinghai-Tibetan plateau. Mol Phylogenet Evol. 2009;50:526-33. doi: 10.1016/j.ympev.2008.12.003
    An B, Zhang L, Liu N, Wang Y. Refugia persistence of Qinghai-Tibetan Plateau by the cold-tolerant bird Tetraogallus tibetanus (Galliformes: phasianidae). PLoS ONE. 2015;10:e0121118. doi: 10.1371/journal.pone.0121118
    Ashcroft MB, Gollan JR, Warton DI, Ramp D. A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix. Glob Change Biol. 2012;18:1866-79. doi: 10.1111/j.1365-2486.2012.02661.x
    Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37-48. doi: 10.1093/oxfordjournals.molbev.a026036
    Benzécri JP. L'analyse Des Données: Tome 2, L'Analyse Des Correspondances. Paris, France: Dunod; 1973.
    Bermingham E, Moritz C. Comparative phylogeography: concepts and applications. Mol Ecol. 1998;7:367-9. doi: 10.1046/j.1365-294x.1998.00424.x
    Bianki VL. Review of the species of genus Tetraogallus Gray (1898). In: Proceedings of Museum Emperor's Academy of Sciences, St. Petersburg. 2001;3:113-23. (in Russian).
    Correa Ribeiro P, Lemos-Filho JP, Oliveira BRS, Lovato MB, Heuertz M. Species-specific phylogeographical patterns and pleistocene east-west divergence in annona (Annonaceae) in the Brazilian cerrado. Bot J Linn Soc. 2016;181:21-36. doi: 10.1111/boj.12394
    Darriba D, Taboada GL, Doallo R, Posada D. Jmodeltest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227995424/
    Drummond AJ, Rambaut A. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. doi: 10.1186/1471-2148-7-214
    Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res. 2012;4:359-61. doi: 10.1007/s12686-011-9548-7
    Excoffier L, Lischer HEL. ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564-7. doi: 10.1111/j.1755-0998.2010.02847.x
    Fang F, Chen J, Jiang LY, Chen R, Qiao GX. Biological traits yield divergent phylogeographical patterns between two aphids living on the same host plants. J Biogeogr. 2017;44:1-13. doi: 10.1111/jbi.12751
    Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1208208
    Goudet J. FSTAT, version 2.9.3. A program to estimate and test gene diversities and fixation indices. Lausanne: Lausanne University; 2001.
    Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009;9:1322-32. doi: 10.1111/j.1755-0998.2009.02591.x
    Janecka JE, Zhang Y, Li D, Munkhtsog B, Bayaraa M, Galsandorj N, et al. Range-wide Snow Leopard phylogeography supports three subspecies. J Hered. 2017;108:597-607. doi: 10.1093/jhered/esx044
    Kennedy JD, Price TD. Ecological limits on diversification of the Himalayan core Corvoidea. Evolution. 2012;66:2599-613. doi: 10.1111/j.1558-5646.2012.01618.x
    Lei F, Qu Y, Song G. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr Zool. 2014;60:149-61. doi: 10.1093/czoolo/60.2.149
    Li J, Xiao L, Lu Z. Challenges of snow leopard conservation in China. Sci China Life Sci. 2016;59:637-9. doi: 10.1007/s11427-016-5067-9
    Librado PRJ. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451-2. doi: 10.1093/bioinformatics/btp187
    Liu N. Isolating mechanism between Tibetan snowcock (Tetraogallus tibetanus) and Himalayan snowcock (Tetraogallu himalayensis). The 65th anniversary meeting of the China Zoological Society, Beijing. 1999. p. 235-46.
    Ma M, Xu F, Zhang T, Tuergan M, Ding P, Chen Y. The Tetraogallu himalayensis and Tetraogallus tibetanus mixed in the same area of the Altun-Kunlun Montains. Thesis volume in the channel-intercoastal science session. 2013.
    McDonald JH, Kreitman M. Adaptive evolution at the Adh locus in Drosophila. Nature. 1991;351:652-4. doi: 10.1038/351652a0
    Namgail T. Winter birds of the Gya-Miru Wildlife Sanctuary, Ladakh, Jammu and Kashmir, India. Indian Birds. 2005;1:26-8.
    Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT, Alström P, et al. Niche filling slows the diversification of Himalayan songbirds. Nature. 2014;509:222-5. doi: 10.1038/nature13272
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-59. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1461096
    Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569-73. doi: 10.1038/nature15697
    Qu Y, Lei F, Zhang R, Lu X. Comparative phylogeography of five avian species: implications for pleistocene evolutionary history in the Qinghai-Tibetan Plateau. Mol Ecol. 2009;19:338-51. http://cn.bing.com/academic/profile?id=f901b6f6d2a4163c3908876f3d9280dc&encoded=0&v=paper_preview&mkt=zh-cn
    Qu Y, Zhang R, Quan Q, Song G, Li S, Lei F. Incomplete lineage sorting or secondary admixture: disentangling historical divergence from recent gene flow in the Vinous-throated Parrotbill (Paradoxornis webbianus). Mol Ecol. 2012;21:6117-33. doi: 10.1111/mec.12080
    Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992;9:552-69. http://cn.bing.com/academic/profile?id=cf3b3f6462ae8ea03f3e85be0d7fead3&encoded=0&v=paper_preview&mkt=zh-cn
    Ruan L, Zhang L, Wen L, Sun Q, Liu N. Phylogeny and molecular evolution of Tetraogallus in China. Biochem Genet. 2005;43:507-18. doi: 10.1007/s10528-005-8167-y
    Shen X, Wang J. Systematics, geographical distribution, and ecology of Tetraogallus in China. Chin J Zool. 1963;5:186-92.
    Tajima F. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585-95. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1203831
    Wang X, Qu J, Liu N, Bao X, Song S. Limited gene flow and partial isolation phylogeography of Himalayan snowcock, Tetraogallus himalayensis, based on part mitochondrial D-loop sequences. Curr Zool. 2011;57:758-67. doi: 10.1093/czoolo/57.6.758
    Weir JT, Schluter D. Calibrating the avian molecular clock. Mol Ecol. 2008;17:2321-8. doi: 10.1111/j.1365-294X.2008.03742.x
    Zhang R, Song G, Qu Y, Alström P, Ramos R, Xing X, et al. Comparative phylogeography of two widespread magpies: importance of habitat preference and breeding behavior on genetic structure in China. Mol Phylogenet Evol. 2012;65:562-72. doi: 10.1016/j.ympev.2012.07.011
    Zhang H, Zhang ML, Sanderson SC. Retreating or standing: responses of forest species and steppe species to climate change in arid Eastern Central Asia. PLoS ONE. 2013;8:e61954. doi: 10.1371/journal.pone.0061954
    Zhang L, Shu M, Zhao C. The Tetraogallus tibetanus and T. himalayensis coexisted. China Nat. 2015;2:50-3.
    Zhang M, Mei J, Zhang Z, Wang J, Xu X. Be exposure ages obtained from quaternary glacial landforms on the Tibetan Plateau and in the surrounding area. Acta Geol Sin-Engl. 2018;92:366-80.
    Zheng Z. Fauna Sinica: Aves, vol. 4. Beijing: Science Press; 1978. p. 51-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1928) PDF downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return