Background In bird species where offspring growth and survival rely on parents' food provisioning, parents can maximise their fitness by increasing the quantity and/or the quality of preys delivered to their offspring. Many studies have focused on inter-individual variation in feeding rate, yet this measure may not accurately reflect the total amount of food (i.e. energy) provided by parents if there is large variation in the quantity and quality of preys at each feeding. Here, we explored the relative role of individual (sex, age, body condition), breeding (hatching date, brood size) and environmental (temperature) factors on feeding rate, prey number, size and quality, and their contribution to total prey biomass delivered to the nestlings of 164 Collared Flycatcher (Ficedula albicollis) parents in 98 nests.
Results Preys delivered to the nest were mainly larvae (53.6%) and flying insects (45.6%). Feeding rate increased with brood size and age, and was higher in males than females. Mean prey number decreased, but mean prey size increased, as the season progressed and parents feeding their brood with primary larvae brought more preys per visit. Relationships between feeding rate, mean prey number and size remained when taking into account the provisioning quality: parents brought either a large number of small prey or a small number of larger items, and the force of the trade-offs between feeding rate and mean prey number and size depended on the quality of the provisioning of the parents. Whatever the percentage of larvae among preys in the provisioning, the variance in total prey biomass was foremost explained by feeding rate (65.1% to 76.6%) compared to mean prey number (16.4% to 26%) and prey size (2.7% to 4%).
Conclusions Our study shows that variation in feeding rate, prey number, size, but not quality (i.e. percentage of larvae), were influenced by individual factors (sex and age) and breeding decisions (brood size and timing of breeding) and that, whatever the provisioning strategy adopted, feeding rate was the best proxy of the total biomass delivered to the nestlings.