Background Wetland loss and degradation result in a reduction in the availability and quality of food for wintering waterbirds. Birds normally modify their foraging behavior to adapt to variations in food availability. In this study, we compared shifts in foraging behavior of Hooded Cranes (Grus monacha) in three different habitats at Shengjin Lake, China to understand the response of these cranes to changes in habitat.
Methods We investigated the food density and foraging behavior of Hooded Cranes in Shengjin Lake National Nature Reserve from November 2014 to April 2015. We used regression equations to describe the changes in food density. A total of 397 behavioral observations were used in the analyses of their foraging efforts. We fitted a candidate set of generalized mixed linear models to analyze the relationship of foraging efforts and food density. We used a method of information theory to guide the selection of the model and Akaike's Information Criterion to calculate the value of each model. The relationship between food density, disturbances and foraging behavior was illustrated using a generalized linear model.
Results Along with the temporal variation and exploitation of food biomass, the food density varied widely among foraging sites. During the early winter period, foraging efforts were more pronounced in the paddy fields and meadows but not significantly different among the three habitats. The cranes spent more foraging effort in the paddy fields and meadows during the middle stage and in the meadows and mudflats during the late winter. The results of the generalized linear model showed that food density and disturbances had different effects on the rate of foraging success during the winter, while the effect of foraging effort was not significant. Furthermore, the rate of feeding success was markedly affected by disturbances in the paddy fields. The combined action of food density and disturbances had a significant effect on the rate of foraging success in the meadows, while the effect of foraging effort was also not significant in three habitats.
Conclusions Changes in foraging behavior were significant in three habitats, which were affected by food density and disturbances. The rate of foraging success increased in the habitat with low food density and low disturbances to increase the foraging efficiency in the lake. With abundant food and a high level of disturbance, the rate of foraging success decreased to ensure more secure access to food.