Volume 11 Issue 1
Apr.  2020
Turn off MathJax
Article Contents
Shujuan Fan, Qingshan Zhao, Hongbin Li, Baoguang Zhu, Shubin Dong, Yanbo Xie, Lei Cao, Anthony David Fox. 2020: Cyclical helping hands: seasonal tailwinds differentially affect migrating Oriental Storks (Ciconia boyciana) travel speed. Avian Research, 11(1): 10. doi: 10.1186/s40657-020-00196-8
Citation: Shujuan Fan, Qingshan Zhao, Hongbin Li, Baoguang Zhu, Shubin Dong, Yanbo Xie, Lei Cao, Anthony David Fox. 2020: Cyclical helping hands: seasonal tailwinds differentially affect migrating Oriental Storks (Ciconia boyciana) travel speed. Avian Research, 11(1): 10. doi: 10.1186/s40657-020-00196-8

Cyclical helping hands: seasonal tailwinds differentially affect migrating Oriental Storks (Ciconia boyciana) travel speed

doi: 10.1186/s40657-020-00196-8

National Key Research and Development Programme of China 2016YFC0500406

International Cooperation and Exchange project NSFC 31661143027

the National Natural Science Foundation of China 31870369

the National Natural Science Foundation of China 31970433

China Biodiversity Observation Networks Sino BON

More Information
  • Corresponding author: Lei Cao, leicao@rcees.ac.cn
  • Received Date: 04 Dec 2019
  • Accepted Date: 14 Apr 2020
  • Publish Date: 23 Apr 2020
  • Background

    The Oriental Stork (Ciconia boyciana) breeds in southeastern Siberia and parts of northeast China, and winters mainly in southeast China. Although the autumn migration pattern of Oriental Storks has been previously described, differences between spring and autumn migration travel speed in relation to wind assistance were unknown.


    Using GPS/GSM transmitters, we tracked the full migrations of 18 Oriental Storks during 2015-2018 to compare differences in autumn and spring migration patterns, and combined the satellite telemetry data with the National Center for Environmental Prediction Reanalysis data to explain the relationship between 850 mbar wind vectors and seasonal differences in travel speed.


    Differences in tailwinds contributed to significant differences in daily average Oriental Storks travel speed in spring (258.11 ± 64.8 km/day) compared to autumn (172.23 ± 49.7 km/day, p < 0.001). Storks stopped significantly more often in autumn than spring (1.78 ± 1.1 versus 1.06 ± 0.9, p < 0.05), but stopover duration (15.52 ± 12.4 versus 16.30 ± 15.1 days, respectively, p = 0.3) did not differ significantly. Tailwinds at 850 mbar pressure level (extracted from the National Center of Environmental Prediction Reanalysis data archive) significantly affected daily flying speed during spring and autumn migration. Tailwind conditions in spring (mean 4.40 ± 5.6 m/s) were always more favourable than in autumn when they received no net benefit (0.48 ± 5.6 m/s, p < 0.001). Despite mean spring migration duration being less than autumn (27.52 ± 15.9 versus 32.77 ± 13.4 days, p = 0.17), large individual variation meant that this duration did not differ significantly from each other.


    For long distance migratory soaring birds (such as storks), relative duration of spring and autumn migration likely relates to the interaction between imperative for earliest arrival to breeding grounds and seasonal meteorological conditions experienced en route.


  • loading
  • Alerstam T, Hedenstrom A. The development of bird migration theory. J Avian Biol. 1998;29:343. doi: 10.2307/3677155
    Allen PE, Goodrich LJ, Bildstein KL. Within- and among-year effects of cold fronts on migrating raptors at hawk mountain, Pennsylvania, 1934-1991. Auk. 1996;113:329-38. doi: 10.2307/4088899
    Barter M, Chen L, Cao L, Lei G. Waterbird survey of the middle and lower Yangtze river floodplain in late January and early February 2004. Beijing: China Forestry Publishing House; 2004.
    Becciu P, Panuccio M, Catoni C, Dell'Omo G, Sapir N. Contrasting aspects of tailwinds and asymmetrical response to crosswinds in soaring migrants. Behav Ecol Sociobiol. 2018;72:28. doi: 10.1007/s00265-018-2447-0
    Becciu P, Menz MH, Aurbach A, Cabrera-Cruz SA, Wainwright CE, Scacco M, et al. Environmental effects on flying migrants revealed by radar. Ecography. 2019;42:942-55. doi: 10.1111/ecog.03995
    Bengtsson D, Avril A, Gunnarsson G, Elmberg J, Soderquist P, Norevik G, et al. Movements, home-range size and habitat selection of mallards during autumn migration. PLoS ONE. 2014;9:e100764. doi: 10.1371/journal.pone.0100764
    Desholm M, Gill R, Bøvith T, Fox AD. Combining spatial modelling and radar to identify and protect avian migratory hot-spots. Curr Zool. 2014;60:680-91. doi: 10.1093/czoolo/60.5.680
    Dunning JB Jr. CRC handbook of avian body masses. Boca Raton: CRC Press; 2007.
    Erni B, Liechti F, Underhill LG, Bruderer B. Wind and rain govern the intensity of nocturnal bird migration in central Europe-a log-linear regression analysis. Ardea. 2002;90:155-66. doi: 10.1097/01.TP.0000087835.09752.70
    Fox AD, Glahder CM, Walsh AJ. Spring migration routes and timing of Greenland white-fronted geese-results from satellite telemetry. Oikos. 2003;103:415-25. doi: 10.1034/j.1600-0706.2003.12114.x
    Gunnarsson TG, Gill JA, Atkinson PW, Gélinaud G, Potts PM, Croger RE, et al. Population-scale drivers of individual arrival times in migratory birds: arrival times of migratory birds. J Anim Ecol. 2006;75:1119-27. doi: 10.1111/j.1365-2656.2006.01131.x
    Hake M, Kjellén N, Alerstam T. Age-dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos. 2003;103:385-96. doi: 10.1034/j.1600-0706.2003.12145.x
    IUCN. The IUCN Red List of Threatened Species. Version 2018-2. 2018. http://www.iucnredlist.org. Downloaded on 26 March 2020.
    Janiszewski T, Minias P, Wojciechowski Z. Reproductive consequences of early arrival at breeding grounds in the White Stork Ciconia ciconia. Bird Study. 2013;60:280-4. doi: 10.1080/00063657.2013.778227
    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, et al. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc. 1996;77:437-72. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    Kemp MU, van Emiel Loon E, Shamoun-Baranes J, Bouten W. RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol. 2012;3:65-70. doi: 10.1111/j.2041-210X.2011.00138.x
    Koelzsch A, Mueskens GJDM, Kruckenberg H, Glazov P, Weinzierl R, Nolet BA, et al. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos. 2016;125:1496-507. doi: 10.1111/oik.03121
    Kokko H. Competition for early arrival in migratory birds. J Anim Ecol. 1999;68:940-50. doi: 10.1046/j.1365-2656.1999.00343.x
    Liechti F. Birds: blowin' by the wind? J Ornithol. 2006;147:202-11. doi: 10.1007/s10336-006-0061-9
    Liechti F, Ehrich D, Bruderer B (1996) Flight behaviour of white storks Ciconia ciconia on their migration over southern Israel. Ardea. 84:3-13
    Luthin C. Status of and conservation priorities for the worlds stork species. Colon Waterbirds. 1987;10:181-202. doi: 10.2307/1521258
    McInnes KL, Erwin TA, Bathols JM. Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos Sci Lett. 2011;12:325-33. doi: 10.1002/asl.341
    Mellone U, Klaassen RHG, García-Ripollés C, Limiñana R, López-López P, Pavón D, et al. Interspecific comparison of the performance of soaring migrants in relation to morphology, meteorological conditions and migration strategies. PLoS ONE. 2012;7:e39833. doi: 10.1371/journal.pone.0039833
    Mueller T, O'Hara RB, Converse SJ, Urbanek RP, Fagan WF. Social learning of migratory performance. Science. 2013;341:999-1002. doi: 10.1126/science.1237139
    Meyer SK, Spaar R, Bruderer B. To cross the sea or to follow the coast? Flight directions and behaviour of migrating raptors approaching the Mediterranean Sea in autumn. Behaviour. 2000;137:379-99. doi: 10.1163/156853900502132
    Møller AP. Phenotype-dependent arrival time and its consequences in a migratory bird. Behav Ecol Sociobiol. 1994;35:115-22. doi: 10.1007/BF00171501
    Newton NI. The migration ecology of birds. Oxford: Academic Press; 2008.
    Nilsson C, Klaassen RHG, Alerstam T. Differences in speed and duration of bird migration between spring and autumn. Am Nat. 2013;181:837-45. doi: 10.1086/670335
    Norberg UM. Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Berlin Heidelberg: Springer Science & Business Media; 2012.
    Parent O, Ilinca A. Anti-icing and de-icing techniques for wind turbines: critical review. Cold Reg Sci Technol. 2011;65:88-96. doi: 10.1016/j.coldregions.2010.01.005
    R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2017. https://cran.r-project.org/doc/manuals/fullrefman.pdf
    Rotics S, Kaatz M, Resheff YS, Turjeman SF, Zurell D, Sapir N, et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J Anim Ecol. 2016;85:938-47. http://cn.bing.com/academic/profile?id=389012788306def60981572fb39967bb&encoded=0&v=paper_preview&mkt=zh-cn
    Rotics S, Kaatz M, Turjeman S, Zurell D, Wikelski M, Sapir N, et al. Early arrival at breeding grounds: causes, costs and a trade-off with overwintering latitude. J Anim Ecol. 2018;87:1627-38. doi: 10.1111/1365-2656.12898
    Rus AI, Duerr AE, Miller TA, Belthoff JR, Katzner TE. Counterintuitive roles of experience and weather on migratory performance. Auk. 2017;134:485-97. doi: 10.1642/AUK-16-147.1
    Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, Cabot D, et al. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov Ecol. 2013;1:4. doi: 10.1186/2051-3933-1-4
    Şen Z, Altunkaynak A, Erdik T. Wind velocity vertical extrapolation by extended power law. Adv Meteorol. 2012;2012:178623. http://cn.bing.com/academic/profile?id=afea1bb9b6523d205d34ffd1cdc0d761&encoded=0&v=paper_preview&mkt=zh-cn
    Sergio F, Tanferna A, De Stephanis R, Jiménez LL, Blas J, Tavecchia G, et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature. 2014;515:410-3. doi: 10.1038/nature13696
    Shamoun-Baranes J, Baharad A, Alpert P, Berthold P, Yom-Tov Y, Dvir Y, et al. The effect of wind, season and latitude on the migration speed of white storks Ciconia ciconia, along the eastern migration route. J Avian Biol. 2003;34:97-104. doi: 10.1034/j.1600-048X.2003.03079.x
    Shamoun-Baranes J, Liechti F, Vansteelant WM. Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J Comp Physiol A. 2017;203:509-29. doi: 10.1007/s00359-017-1181-9
    Shimazaki H, Tamura M, Darman Y, Andronov V, Parilov MP, Nagendran M, et al. Network analysis of potential migration routes for Oriental White Storks (Ciconia boyciana). Ecol Res. 2004;19:683-98. doi: 10.1111/j.1440-1703.2004.00684.x
    Smith RJ, Moore FR. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav Ecol Sociobiol. 2005;57:231-9. doi: 10.1007/s00265-004-0855-9
    Spaar R, Bruderer B. Soaring migration of steppe eagles Aquila nipalensis in southern Israel: flight behaviour under various wind and thermal conditions. J Avian Biol. 1996;27:289-301. doi: 10.2307/3677260
    Thorup K, Alerstam T, Hake M, Kjellén N. Traveling or stopping of migrating birds in relation to wind: an illustration for the osprey. Behav Ecol. 2006;17:497-502. doi: 10.1093/beheco/arj054
    Vansteelant WMG, Bouten W, Klaassen RHG, Koks BJ, Schlaich AE, van Diermen J, et al. Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. J Avian Biol. 2015;46:25-39. doi: 10.1111/jav.00457
    Vidal-Mateo J, Mellone U, López-López P, La Puente JD, García-Ripollés C, Bermejo A, et al. Wind effects on the migration routes of trans-Saharan soaring raptors: geographical, seasonal, and interspecific variation. Curr Zool. 2016;62:89-97. doi: 10.1093/cz/zow008
    Wang Q, Yang Z. Current studies on oriental white stork. J Anhui Univ (Nat Sci). 1995;19:82-99 (in Chinese).
    Wang X, Cao L, Bysykatova I, Xu Z, Rozenfeld S, Jeong W, et al. The Far East taiga forest unrecognized inhospitable terrain for migrating Arctic-nesting waterbirds? PeerJ. 2018;6:e4353. doi: 10.7717/peerj.4353
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1697) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint