Lidan Zhao, Runmei Wang, Yunan Wu, Mengsi Wu, Weihong Zheng, Jinsong Liu. 2015: Daily variation in body mass and thermoregulation in male Hwamei (Garrulax canorus) at different seasons. Avian Research, 6(1): 4. DOI: 10.1186/s40657-015-0011-4
Citation: Lidan Zhao, Runmei Wang, Yunan Wu, Mengsi Wu, Weihong Zheng, Jinsong Liu. 2015: Daily variation in body mass and thermoregulation in male Hwamei (Garrulax canorus) at different seasons. Avian Research, 6(1): 4. DOI: 10.1186/s40657-015-0011-4

Daily variation in body mass and thermoregulation in male Hwamei (Garrulax canorus) at different seasons

More Information
  • Corresponding author:

    Jinsong Liu, ljs@wzu.edu.cn

  • Received Date: 09 Nov 2014
  • Accepted Date: 20 Jan 2015
  • Available Online: 24 Apr 2022
  • Publish Date: 14 Mar 2015
  • Background 

    Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. In the present study, we measured diurnal variations in body mass, body temperature and basal metabolic rate (BMR) for seasonally acclimatized Hwameis (Garrulax canorus).

    Methods 

    Body mass was determined with a Sartorius balance. Metabolic rates of Hwameis were measured with an open-circuit respirometry system.

    Results 

    Body masses varied with time of day and were higher in daytime for Hwameis in both summer and winter, and body masses in winter were higher compared to that in summer. Body temperatures of Hwameis were higher in daytime, and the summer acclimatized birds had significantly higher body temperatures compared to the winter acclimatized birds. BMRs of Hwameis were significantly higher during the daytime compared to the nighttime of the daily cycle in both summer and winter, and Hwameis in winter had significantly higher BMRs than that in summer.

    Conclusions 

    This result showed that Hwameis rely mostly on metabolic capacity to maintain their body temperature in cold weathers, and Hwameis exhibited daily and seasonal flexibility in morphology and physiology which is important under changing environmental conditions.

  • In temperate-breeding birds, individuals must be able to adapt to the annual cycle of changing environmental conditions by adjusting morphology, physiology and behavior (Wingfield 2008). Phenotypic flexibility, which means an individual switches its phenotype (e.g. morphological, physiological, and behavioral traits) from one life-history stage to another, is a critical way to maximize ecological fitness (Piersma and Drent 2003; Wingfield 2008).

    Alkaline phosphatase (ALP) is an isozyme family in various tissues particularly concentrated in the liver, kidney, bone, and placenta (Iqbal 2011). ALP is a hydrolase enzyme responsible for the dephosphorylation from nucleotides, proteins, alkaloids etc., therefore, it plays critical roles in regulating the metabolism of energy and minerals (Lallès 2014). Previous studies have shown that plasma ALP activity is associated with bone growth and can be a sensitive indicator of skeletal development in various avian species, e.g. Spanish Imperial Eagle (Aquila adalberti) (Dobado-Berrios and Ferrer 1997), Black Vulture (Aegypius monachus) (Villegas et al. 2002), Pigeon Guillemot (Cepphus columba) (Seiser et al. 2000), White Stork (Ciconia ciconia) (Smits et al. 2007), and Great Tit (Parus major) (Tilgar et al. 2004, 2008). Furthermore, evidences have shown that plasma ALP activity is positively correlated with nutritional status, and can vary rapidly in response to the availability of food (Viñuela and Ferrer 1997; Villegas et al. 2002).

    The energy reserves and nutritional state of individuals in free-living birds can be reflected by body condition, including body mass and size-corrected mass (SCM; Bryant 1988; Jakob et al. 1996; Merila and Wiggins 1997; Zhao et al. 2017). Hematocrit (Hct), the volume of red blood cells within the total volume of blood, is used as an estimate of the extent and efficiency of oxygen-carrying capacity of individuals (Fair et al. 2007; Pap et al. 2015). Generally, a low Hct is generally associated with poor nutritional state (Richner et al. 1993; Fair et al. 2007). In birds, Hct has been commonly used as body condition index, and also regarded as an indicator of individual quality and fitness (Fair et al. 2007; Williams 2012; Zhao et al. 2017). Furthermore, body mass, SCM, and Hct all vary with life-history stage (Stearns 1989; Wojczulanis-Jakubas et al. 2015; Krause et al. 2016; Zhao et al. 2017), which is associated with plasma ALP activities (Villegas et al. 2002).

    Recently, assessment of body condition and nutritional status has become more common in ecological studies as an approach to understanding the individual variations and life history trade-offs (Cam et al. 2016; Crates et al. 2016). In view of plasma ALP activity being considered as a physiological indicator, it may have useful applications in the assessment of the individual variability and physiological state from different life-history stages. The information of life-history dependent relationship between plasma ALP activity and body condition, is critical to understanding how free-living animals fine-tune the trade-off between reproduction and survival so as to optimize their chances of survival during nonbreeding stage, and successful reproduction during breeding stage (Stearns 1989; Cox et al. 2010). However, little information is available on the link between plasma ALP activity and body condition.

    The Eurasian Tree Sparrow (Passer montanus) is a seasonally breeding species that is widely distributed across the Eurasian continent. Previous studies have demonstrated that the body mass or body condition of Eurasian Tree Sparrows vary with life-history stage (Li et al. 2008, 2011, 2012; Zheng et al. 2014) and living environment (Zhang et al. 2011; Sun et al. 2016, 2017). Furthermore, male sparrows during the early breeding stage had significantly greater Hct values compared to those from the early wintering stage, whereas there were no significant differences in SCM between the two life-history stages (Zhao et al. 2017). In the present study, we further determined the changes of plasma ALP levels in both the breeding and the wintering stages, and examined the relationships between ALP and SCM, and Hct in the same experimental animals (Zhao et al. 2017).

    Free-living Eurasian Tree Sparrows (Passer montanus) were captured opportunistically by mist nets in October 24, 2015 (the early wintering stage) and April 28, 2016 (the early breeding stage), on the campus of Hebei Normal University, Hebei Province, China (38°01.83′N, 114°31.50′E, elevation: 75 m). The birds were sexed by polymerase chain reaction following the procedures described in Round et al. (2007) since the Eurasian Tree Sparrow is sexually monomorphic. Subsequent measurements of body condition and plasma ALP activities were performed on male birds only.

    Each individual was caged (50 cm × 34 cm × 33 cm) at an ambient temperature of 20 ℃, and provided with food and water ad libitum. Birds sampled in the wintering stage were kept under a stimulated natural photoperiod (10L/14D; n = 27), whereas those sampled in the breeding stage were kept under a stimulated natural photoperiod (14L/10D; n = 26). Birds were acclimated under these conditions for 12-14 days.

    After acclimation, approximately 80 μL blood were collected by piercing the alar vein with a 26-gauge needle and collecting blood into heparinized microhematocrit capillary tubes. Blood samples were stored on ice before being centrifuged at 855g for 10 min. Hct was measured as described in Zhao et al. (2017). Fresh plasma was split into several fractions and stores at -80 ℃, and one of fractions was used for ALP assay.

    Each bird was weighed to the nearest 0.1 g, and its wing length was measured to the nearest 1 mm. The SCM was calculated and reported in Zhao et al. (2017). After sampling, the birds were used for other experiments. All protocols were approved by the Institutional Animal Care and Use Committee (HEBTU2013-7), and the Ethics and Animal Welfare Committee (No. 2013-6) of Hebei Normal University, China, and were carried out under scientific collecting permits issued by the Departments of Wildlife Conservation (Forestry Bureau) of Hebei Province, China.

    Plasma ALP activities were measured by an automatic biochemical analyzer (Mindray BS-180) with commercially available kits (Mindray Corp., Shenzhen, China) after the plasma was diluted with dH2O (1:39). All samples were run in duplicate. The intra- and inter-assay variations were 6.9 and 9.4%, respectively.

    We ran Shapiro-Wilk normality test to examine the normal distributions of body mass, SCM, Hct, and ALP activity. All the variables met the normal distribution. The statistical significance of differences in body mass and plasma ALP activity between the breeding and the wintering stages were determined by Welch's t-tests (the data of SCM and Hct have been reported in Zhao et al. 2017). We ran a multiple regression analysis (MRA) using the glm function to obtain optimal models of plasma alkaline phosphatase (ALP) activity against life-history stage and mass, SCM, or Hct and their interactions in Program R v. 3.3.2. (R Core Team 2016). The homogeneity of variances was tested with three outliers removed before conducting statistical tests. All analyses were performed and all figures generated, using car, MASS, and ggplot2 packages in Program R v. 3.3.2. The data are shown as mean ± SD.

    There were no significant differences in body mass of male Eurasian Tree Sparrows between the breeding (18.88 ± 0.19 g) and the wintering stages (19.36 ± 0.23 g; t1, 57 = 1.59, p = 0.118), whereas the birds in the breeding stage had significantly lower ALP activities (442.9 ± 9.9 U/L) than those in the wintering stage (593.4 ± 18.0 U/L; t1, 51 = 7.2, p < 0.001).

    ALP activity was not correlated with individual body mass in both stages. However, ALP activity was positively correlated with individual SCM and Hct (Table 1). There were significant effects of the interaction 'season × SCM' and 'season × Hct', respectively (Table 1). Specifically, we found a positive relationship between ALP and SCM, or Hct in the wintering, but no significant relationships in the breeding stages (statistical results are shown in Fig. 1).

    Table  1.  Statistical results of best fitted regression models of plasma alkaline phosphatase (ALP) activity against life-history stage (stage, dummy variable) and body mass (Mass), size-corrected mass (SCM), or hematocrit (Hct) and their interactions in male Eurasian Tree Sparrows (Passer montanus) from the breeding and the wintering stages
    Variable Model Standardized β value SE t p
    MassIntercept0.6580.1484.461< 0.001
    Stage: breeding‒1.2900.209‒6.179< 0.001
    Mass0.1870.1061.7740.083
    SCMIntercept0.7900.1365.799< 0.001
    Stage: breeding‒1.4560.190‒7.653< 0.001
    SCM0.5340.1463.655 0.001
    Stage × SCM‒0.5560.194‒2.868 0.006
    HctIntercept0.8730.1406.245< 0.001
    Stage: breeding‒1.5870.200‒7.930< 0.001
    Hct0.5400.1423.793< 0.001
    Stage × Hct‒0.5060.202‒2.501 0.016
    Italics mean that there is statistical significance in the results, in which significance is set at p = 0.05
     | Show Table
    DownLoad: CSV
    Figure  1.  Correlations between plasma alkaline phosphatase (ALP) and size-corrected mass (SCM) (a wintering: df = 22, t = 2.858, p = 0.009; breeding: df = 23, t = -0.281, p = 0.781), and hematocrit (Hct) (b wintering: df = 22, t = 3.036, p = 0.006; breeding: df = 23, t = 0.372, p = 0.713), of male Eurasian Tree Sparrows in the wintering or the breeding stages. Shaded areas are 95% confidence limits

    Body mass in birds is often affected by food availability and therefore it can reflect the amount of stored energy (Merila and Wiggins 1997; Cuthill et al. 2000). Loss of body mass is thought to reflect the mobilization of energy stores via protein catabolism during periods of increased energetic expenditure (Bryant 1988; Merila and Wiggins 1997). However, the absence of significant differences in body mass and SCM (reported in Zhao et al. 2017) of male Eurasian Tree Sparrows between the breeding and the wintering stages suggests that the energetic requirements might be constant in the two life-history stages.

    The mean ALP activities in male Eurasian Tree Sparrows lay within the previously documented ranges in European Starlings (Sturnus vulgaris) but are higher than the values in Red-winged Blackbirds (Agelaius phoeniceus), Northern Bobwhites (Colinus virginianus, and Common Grackles (Quiscalus quiscula) (Hill and Murray 1987) and Black Vulture (Villegas et al. 2002). We found male Eurasian Tree Sparrows during the breeding stage had significantly decreased ALP activities compared to those in the wintering stage. Our results are in line with previous findings in captive Northern Bobwhites, Red-winged Blackbirds, Common Grackles but European Starlings (Hill and Murray 1987). Given that ALP activity could be affected by food availability or energetic condition, whether such seasonal differences are associated with life-history trade-offs of resources allocation warrants to be further determined.

    The plasma ALP activities in male Eurasian Tree Sparrows were positively correlated with SCM and Hct during the wintering stage. Our results are in accordance with a positive relationship between ALP activity and condition index in Black Vulture nestlings (Villegas et al. 2002), and between ALP activity and nutritional status in rats (Martins et al. 1998).

    Given that SCM and Hct are defined as the status of metabolic reserves (Newton 1993; Fair et al. 2007) and plasma ALP activity is involved in regulating energetic metabolism (Lallès 2014), the positive relationships between plasma ALP activity and SCM, or Hct may provide reliable evidences for direct link of morphological indices and hematologic parameters. Our results suggest that the plasma ALP activity can be used as an indicator of the physiological state for analyzing phenotypic flexibility and individual variation related to body condition or nutritional status of free-living animals in the wintering stage. Whether individuals with better body condition and higher ALP activities have increased fitness requires further investigation.

    However, in the breeding stage, plasma ALP activities of male Eurasian Tree Sparrows were neither correlated with SCM nor Hct. Breeding is considered as an energetically expensive activity that requires high levels of oxygen delivery to active tissues (Williams 1966), which can be reflected by elevated Hct in this period relative to nonbreeding stage, e.g. in male Eurasian Tree Sparrow (Zhao et al. 2017), and White-crowned Sparrow (Zonotrichia leucophrys) (Krause et al. 2016). Compared to the nonbreeding stage, male Eurasian Tree Sparrows in breeding stage require sufficient energy and nutrients to meet the demands of maintaining reproduction-related physiological and behavioral activities, e.g. exhibiting peak T levels, competing for territories, building nests, etc. (García-Navas et al. 2008; Li et al. 2012). In the present study, our results indicate that individuals with greater value of SCM and Hct do not necessarily have higher plasma ALP activities in breeding stage.

    Therefore, we found the relationships between plasma ALP activity and SCM, or Hct varied with life-history stage, which is consistent with the relationships between plasma immunological indices and SCM, or Hct in male Eurasian Tree Sparrows (Zhao et al. 2017). Whether such life-history dependent relationships between hematologic parameters and body condition can reflect a strategy of a shift in energy allocation from self-maintenances to reproduction in free-living birds during the breeding stage, i.e. trade-off between individual survival and reproduction, remains to be further investigated.

    In summary, male Eurasian Tree Sparrows exhibited elevated plasma ALP activity but lower Hct values during the wintering compared to the breeding stages. The positive correlations between plasma ALP activities and individual SCM or Hct occurred in the wintering but not in the breeding stages, which suggests that plasma ALP activities can be used as one of the indicators of body condition or nutritional status in free-living birds for analyzing individual variation in nonbreeding stage. Such life-history dependent relationships between plasma ALP activity and body condition may contribute to our better understanding of the trade-off between individual survival and reproduction in free-living animals.

    DML conceived the research project and led the writing, YLZ and LG collected the data, BHZ, XBG, and YFW analyzed the data. All authors read and approved the final manuscript.

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 31672292, 31372201), and the Natural Science Foundation of Hebei Province (C2017205059).

    The authors declare that they have no competing interests.

  • Arens JR, Cooper SJ (2005) Seasonal and diurnal variation in metabolism and ventilation in house sparrows. Condor 107:433-444
    Aschoff J, Pohl H (1970) Der ruheumsatz von vögeln als funktion der tazeszeitund der körpergrösse. J Ornithol 111:38-47
    Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc R Soc Lond B 277:503-511
    Beldade P, Mateus ARA, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Evol 20:1347-1363
    Burns DJ, Ben-Hamo M, Bauchinger U, Pinshow B (2013) Huddling house sparrows remain euthermic at night, and conserve body mass. J Avian Biol 44:198-202
    Bush NG, Brown M, Downs CT (2008) Seasonal effects on thermoregulatory responses of the Rock Kestrel, Falco rupicolis. J Ther Biol 33:404-412
    Chamane SC, Downs CT (2009) Seasonal effects on metabolism and thermoregulation abilities of the Red-winged Starling (Onychognathus morio). J Ther Biol 34:337-341
    Cooper SJ (2007) Daily and seasonal variation in body mass and visible fat in mountain chickadees and juniper titmice. Wilson J Ornithol 119:720-724
    Doucette LI, Geiser F (2008) Seasonal variation in thermal energetics of the Australian owlet-nightjar (Aegotheles cristatus). Comp Biochem Physiol A 151:615-620
    Hill RW (1972) Determination of oxygen consumption by use of the paramagnetic oxygen analyzer. J Appl Physiol 33:261-263
    Karasov WH (2011) Digestive physiology: a view from molecules to ecosystem. Am J Physiol 301:R276-R284
    Lehikoinen E (1987) Seasonality of the daily weight cycle in wintering passerines and its consequences. Ornis Scand 18:216-226
    Li SH, Li JW, Han LX, Yao CT, Shi HT, Lei FM, Yen CW (2006) Species delimitation in the Hwamei Garrulax canorus. Ibis 148:698-706
    Li YG, Yang ZC, Wang DH (2010) Physiological and biochemical basis of basal metabolic rates in Brandt's voles (Lasiopodomys brandtii) and Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol A 157:204-211
    Liknes ET, Swanson DL (2011) Phenotypic flexibility of body composition associated with seasonal acclimatization in passerine birds. J Ther Biol 36:363-370
    Lindsay CV, Downs CT, Brown M (2009) Physiological variation in Amethyst Sunbirds (Chalcomitra amethystina) over an altitudinal gradient in summer. J Ther Biol 34:190-199
    Liu JS, Li M (2006) Phenotypic flexibility of metabolic rate and organ masses among tree sparrows Passer montanus in seasonal acclimatization. Acta Zool Sin 52:469-477
    Liu JS, Wang DH, Sun RY (2005) Climatic adaptations in metabolism of four species of small birds in China. Acta Zool Sin 51:24-30
    MacKinnon J, Phillipps K (2000) A Field Guide to the Birds of China. Oxford University Press, London
    McKechnie AE (2008) Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review. J Comp Physiol B 178:235-247
    McKechnie AE, Lovegrove BG (2002) Avian facultative hypothermic responses: a review. Condor 104:705-724
    McKechnie AE, Wolf BO (2004) The allometry of avian basal metabolic rate: good predictions need good data. Physiol Biochem Zool 77:502-521
    McKechnie AE, Freckleton RP, Jetz W (2006) Phenotypic plasticity in the scaling of avian basal metabolic rate. Proc R Soc Lond B 273:931-937
    McNab BK (2006) The relationship among flow rate, chamber volume and calculated rate of metabolism in vertebrate respirometry. Comp Biochem Physiol A 145:287-294
    McNab BK (2009) Ecological factors affect the level and scaling of avian BMR. Comp Biochem Physiol A 152:22-45
    Nzama SN, Downs CT, Brown M (2010) Seasonal variation in the metabolism-temperature relation of House Sparrows (Passer domesticus) in KwaZulu-Natal, South Africa. J Ther Biol 35:100-104
    Petit M, Lewden A, Vézina F (2014) How dose flexlibility in body mass composition relate to seasonal changes in metabolic performance in a small passerine wintering at northern latitude? Physiol Biochem Zool 87:539-549
    Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18:228-233
    Pohl H, West GC (1973) Daily and seasonal variation in metabolic response to cold during rest and exercise in the common redpoll. Comp Biochem Physiol A 45:851-867
    Polo V, Carrascal LM (2008) Nocturnal body mass loss in coal tits Periparus ater: the combined effects of ambient temperature and body reserves. Acta Zool Sin 54:615-621
    Prinzinger R, Prebmar A, Schleucher E (1991) Body temperature in Birds. Comp Biochem Physiol A 99:499-506
    Schmidt-Nielsen K (1997) Animal Physiology: Adaptation and Environment. Cambridge University Press, London
    Smit B, McKechnie AE (2010) Avian seasonal metabolic variation in a subtropical desert: basal metabolic rates are lower in winter than in summer. Funct Ecol 24:330-339
    Starck JM (2009) Phenotypic plasticity, cellular dynamics, and epithelial turnover of the intestine of Japanese quail (Coturnix coturnix japonica). J Zool 238:53-79
    Swanson DL (1990) Seasonal variation in cold hardiness and peak rates of cold-induced thermogenesis in the dark-eyed junco, Junco hyemalis. Auk 107:561-566
    Swanson DL (2001) Are summit metabolism and thermogenic endurance correlated in winter- acclimatized passerine birds? J Comp Physiol B 171:475-481
    Swanson DL (2010) Seasonal metabolic variation in birds: functional and mechanistic correlates. In: Thompson CF (ed) Current Ornithology. Springer, Berlin, pp 75-129
    Swanson DL, Merkord C (2013) Seasonal phenotypic flexibility of flight muscle size in small birds: a comparison of ultrasonography and tissue mass measurements. J Ornithol 154:119-127
    Swanson DL, Zhang YF, Liu JS, Merkord CL, King MO (2014) Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos. J Exp Biol 217:866-875
    Vézina F, Jalvingh K, Dekinga A, Piersma T (2006) Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size. J Exp Biol 209:3141-3154
    Weathers WW, Caccamise F (1978) Seasonal acclimatization to temperature in monk parakeets. Oecologia 35:173-183
    Wiersma P, Muñoz-Garcia A, Walker A, Williams JB (2007) Tropical birds have a slow pace of life. Proc Natl Acad Sci 104:9340-9345
    Wikelski M, Spinney L, Schelsky W, Scheuerlein A, Gwinner E (2003) Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proc R Soc Lond B 270:2383-2388
    Wu MS, Xiao YC, Yang F, Zhou LM, Zheng WH, Liu JS (2014) Seasonal variation in body mass and energy budget in Chinese bulbuls (Pycnonotus sinensis). Avian Res 5:4
    Wu MX, Zhou LM, Zhao LD, Zhao ZJ, Zheng WH, Liu JS (2015) Seasonal variation in body mass, body temperature and thermogenesis in the Hwamei, Garrulax canorus. Comp Biochem Physiol A 179:113-119
    Xia SS, Yu AW, Zhao LD, Zhang HY, Zheng WH, Liu JS (2013) Metabolic thermogenesis and evaporative water loss in the Huamei Garrulax canorus. J Therm Biol 38:576-581
    Yuni LPEK, Rose RW (2005) Metabolism of winter-acclimatized New Holland honeyeaters Phylidonyris novaehollandiae from Hobart, Tasmania. Acta Zool Sin 51:338-343
    Zheng GM, Zhang CZ (2002) Birds in China. China Forestry Publishing House, Beijing
    Zheng WH, Li M, Liu JS, Shao SL (2008a) Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passer montanus). Comp Biochem Physiol A 151:519-525
    Zheng WH, Liu JS, Jang XH, Fang YY, Zhang GK (2008b) Seasonal variation on metabolism and thermoregulation in Chinese bulbul. J Therm Biol 33:315-319
    Zheng WH, Lin L, Liu JS, Pan H, Cao MT, Hu YL (2013a) Physiological and biochemical thermoregulatory responses of Chinese bulbuls Pycnonotus sinensis to warm temperature: Phenotypic flexibility in a small passerine. J Therm Biol 38:483-490
    Zheng WH, Lin L, Liu JS, Xu XJ, Li M (2013b) Geographic variation in basal thermogenesis in little buntings: Relationship to cellular thermogenesis and thyroid hormone concentrations. Comp Biochem Physiol A 164:240-246
    Zheng WH, Li M, Liu JS, Shao SL, Xu XJ (2014a) Seasonal variation of metabolic thermogenesis in Eurasian tree sparrows Passer montanus over a latitudinal gradient. Physiol Biochem Zool 87:704-718
    Zheng WH, Liu JS, Swanson DL (2014b) Seasonal phenotypic flexibility of body mass, organ masses, and tissue oxidative capacity and their relationship to RMR in Chinese bulbuls. Physiol Biochem Zool 87:432-444
    Zungu MM, Brown M, Downs CT (2013) Seasonal thermoregulation in the burrowing parrot (Cyanoliseus patagonus). J Therm Biol 38:47-54
  • Related Articles

  • Cited by

    Periodical cited type(4)

    1. Mo Li, Ghulam Nabi, Yanfeng Sun, et al. The effect of air pollution on immunological, antioxidative and hematological parameters, and body condition of Eurasian tree sparrows. Ecotoxicology and Environmental Safety, 2021, 208: 111755. DOI:10.1016/j.ecoenv.2020.111755
    2. Imtiaz Ahmed, Ishtiyaq Ahmad. Dietary lysine modulates growth performance, haemato‐biochemical indices, non‐specific immune response, intestinal enzymatic activities and antioxidant properties of rainbow trout, Oncorhynchus mykiss fingerlings. Aquaculture Nutrition, 2021. DOI:10.1111/anu.13409
    3. Mo Li, Qian Zhang, Xiaohan Gao, et al. A case report of bill color aberration in a free-living Eurasian Tree Sparrow (Passer montanus): Morphological and physiological description. The Wilson Journal of Ornithology, 2019, 131(3): 553. DOI:10.1676/18-165
    4. Mo Li, Weiwei Zhu, Yang Wang, et al. Effects of capture and captivity on plasma corticosterone and metabolite levels in breeding Eurasian Tree Sparrows. Avian Research, 2019, 10(1) DOI:10.1186/s40657-019-0155-8

    Other cited types(0)

Catalog

    Figures(6)

    Article Metrics

    Article views (250) PDF downloads (8) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return