Volume 6 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Anders Pape Møller, Johannes Erritzøe. 2015: Brain size and urbanization in birds. Avian Research, 6(1): 8. DOI: 10.1186/s40657-015-0017-y
Citation: Anders Pape Møller, Johannes Erritzøe. 2015: Brain size and urbanization in birds. Avian Research, 6(1): 8. DOI: 10.1186/s40657-015-0017-y

Brain size and urbanization in birds

More Information
  • Corresponding author:

    Anders Pape Møller, anders.moller@u-psud.fr

  • Received Date: 07 Nov 2014
  • Accepted Date: 14 Mar 2015
  • Available Online: 24 Apr 2022
  • Published Date: 14 May 2015
  • Background 

    Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains.

    Methods 

    Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size.

    Results 

    There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very small brains.

    Conclusions 

    These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  • loading
  • Almond D, Edlund L, Palmer M (2007) Chernobyl's subclinical legacy: Prenatal exposure to radioactive fallout and school outcomes in Sweden. Natl Bureau Econ Res 13347:1-50
    Ames A (2000) CNS energy metabolism as related to function. J Neurosci 34:42-68
    Armstrong E, Bergeron R (1985) Relative brain size and metabolism in birds. Brain Behav Evol 26:141-153
    Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335-358
    Baratti M, Cordaro M, Dessi-Fulgheri F, Vannini M, Fratini S (2009) Molecular and ecological characterization of urban populations of the mallard (Anas platyrhynchos) in Italy. Ital J Zool 76:330-339
    Björklund M, Ruiz I, Senar JC (2010) Genetic differentiation in the urban habitat: The great tits (Parus major) of the parks of Barcelona city. Biol J Linn Soc 99:9-19
    Bonaparte KM, Riffle-Yokoi C, Burley NT (2011) Getting a head start: Diet, sub-adult growth, and associative learning in a seed-eating passerine. PLoS One 6(9):e23775
    Carrete M, Tella JL (2011) Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS One 6(4):e18859
    Cohen J (1988) Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence Erlbaum, Hillsdale, NJ
    Cramp S, Perrins CM (eds) (1977-1994) The Birds of the Western Palearctic. Vols 1-9. Oxford University Press, Oxford, UK
    Crile G, Quiring DP (1940) A record of the body weight and certain organ and gland weight of 3690 animals. Ohio J Sci 40:219-259
    Croci S, Butet A, Clergeau P (2008) Does urbanization filter birds on the basis of their biological traits? Condor 110:223-240
    Davis KE (2008) Reweaving the tapestry: a supertree of birds. PhD Thesis. University of Glasgow, Glasgow, Scotland
    Draper NR, Smith H (1981) Applied Regression Analysis, 2nd edn. John Wiley, New York, NY
    Evans KL, Gaston KJ, Frantz AC, Simeoni M, Sharp SP, McGowan A, Dawson DA, Walasz K, Partecke J, Burke T, Hatchwell BJ (2009) Independent colonization of multiple urban centres by a formerly forest specialist bird species. Proc R Soc Lond B 276:2403-2410
    Evans KL, Chamberlain DE, Hatchwell BJ, Gregory RD, Gaston KJ (2011) What makes an urban bird? Global Change Biol 17:32-44
    Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1-15
    Fulgione D, Rippa D, Procaccini G, Milone M (2000) Urbanisation and the genetic structure of Passer italiae (Viellot 1817) populations in the south of Italy. Ethol Ecol Evol 12:123-130
    Garamszegi LZ, Møller AP (2010) Effects of sample size and intraspecific variation in phylogenetic comparative studies: A meta-analytic review. Biol Rev 85:797-805
    Gliwicz J, Goszczynski J, Luniak M (1994) Characteristic features of animal populations under synurbanization: The case of the Blackbirds and the striped field mouse. Mem Zool 49:237-244
    Glutz von Blotzheim UN, Bauer KM (eds) (1966-1997) Handbuch der Vögel Mitteleuropas Band. Aula-Verlag, Wiebelsheim, Germany
    Harvey PH, Pagel M (1991) The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK
    Heiervang KS, Mednick S, Sundet K, Rund BR (2010) Effect of low dose ionizing radiation exposure in utero on cognitive function in adolescence. Scand J Psychol 51:210-215
    Hoffman DJ, Heinz GH (1998) Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. Environ Toxicol Chem 17:161-166
    Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: Can anyone become an 'urban exploiter'? J Biogeogr 34:638-651
    Klausnitzer B (1989) Verstädterung von Tieren. Neue Brehm-Bücherei, Wittenberg Lutherstadt, Germany
    Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11:475-480
    Laughlin SB, van Steveninck RRD, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1:36-41
    Maklakov AA, Immler S, Gonzalez-Voyer A, Rönn J, Kolm N (2011) Brains and the city: Big-brained passerine birds succeed in urban environments. Biol Lett 7:730-732
    McClave JT, Sincich T (2003) Statistics, 9th edn. Prentice-Hall, Englewood Cliffs, NJ
    Mlikovsky J (1990) Brain size in birds: 4. Passeriformes. Acta Soc Zool Bohemoslov 54:27-37
    Møller AP (2008) Flight distance of urban birds, predation and selection for urban life. Behav Ecol Sociobiol 63:63-75
    Møller AP (2009) Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159:849-858
    Møller AP (2010) Interspecific variation in fear responses predicts urbanization in birds. Behav Ecol 21:365-371
    Møller AP, Nielsen JT (2007) Malaria and risk of predation: A comparative study of birds. Ecology 88:871-881
    Møller AP, Surai PF, Mousseau TA (2005) Antioxidants, radiation and mutation in barn swallows from Chernobyl. Proc R Soc Lond B 272:247-253
    Møller AP, Erritzøe J, Karadas F (2010) Levels of antioxidants in rural and urban birds and their consequences. Oecologia 163:35-45
    Møller AP, Bonisoli-Alquati A, Rudolfsen G, Mousseau TA (2011) Chernobyl birds have smaller brains. PLoS One 6(2):e16862
    Møller AP, Diaz M, Flensted-Jensen E, Grim T, Ibáñez-Álamo JD, Jokimäki J, Mänd R, Marko G, Tryjanowski P (2012) High urban population density of birds reflects their timing of urbanization. Oecologia 170:867-875
    Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied Linear Statistical Models. Irwin, Chicago, IL
    Nilsson GE (1999) Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain. J Exp Biol 199:603-607
    Nyagu AI, Loganovsky KN (1998) Neuro-psychiatric Effects of Ionizing Radiation. Chernobylinterinform, Kiev, Ukraine
    Portmann A (1947) Etudes sur la cérébralisation chez les oiseaux. Alauda 15:1-15
    Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC): an Apple-Macintosh application for analyzing comparative data. Comput Appl Biosci 11:247-251
    Ricklefs RE (2004) The cognitive face of avian life histories. Wilson Bull 116:119-133
    Rosenthal R (1994) Parametric measures of effect size. In: Cooper H, Hedges LV (eds) The Handbook of Research Synthesis. Russell Sage Foundation, New York, NY, pp 231-244
    Rutkowski R, Rejt L, Gryczynska-Siematkowska A, Jagolkowska P (2005) Urbanization gradient and genetic variability of birds: Example of kestrels in Warsaw. Berkut 14:130-136
    SAS Institute Inc (2012) JMP version 10. SAS Institute Inc, Cary
    Sewalk CJ, Brewer GL, Hoffman DJ (2001) Effects of diquat, an aquatic herbicide, on the development of mallard embryos. J Toxicol Environ Health A 62:33-45
    Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York, NY
    Sol D, Lefebvre L (2000) Behavioural flexibility predicts invasion success in birds introduced to New Zealand. Oikos 90:599-605
    Sol D, Timmermans S, Lefebvre L (2002) Behavioural flexibility and invasion success in birds. Anim Behav 63:495-502
    Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L (2005) Big brains, enhanced cognition, and response of birds to novel environments. Proc Natl Acad Sci U S A 102:5460-5465
    Stephan B (1999) Die Amsel. Neue Brehm-Bücherei. Wittenberg-Lutherstadt, Germany
  • Cited by

    Periodical cited type(26)

    1. Leite, A.B., Camacho, A., Francisco, M.R. Nest attachment, rather than nest type, correlates with passerine bird brain size. Ibis, 2024, 166(3): 814-825. DOI:10.1111/ibi.13292
    2. Zhong, Y., Luo, Y., Zhu, Y. et al. Geographic variations in eco-evolutionary factors governing urban birds: The case of university campuses in China. Journal of Animal Ecology, 2024, 93(2): 208-220. DOI:10.1111/1365-2656.14038
    3. Lamarre, J., Cheema, S.K., Robertson, G.J. et al. Foraging on anthropogenic food predicts problem-solving skills in a seabird. Science of the Total Environment, 2022. DOI:10.1016/j.scitotenv.2022.157732
    4. Morozov, N.S.. The Role of Predators in Shaping Urban Bird Populations: 1. Who Succeeds in Urban Landscapes?. Biology Bulletin, 2022, 49(8): 1057-1080. DOI:10.1134/S1062359022080118
    5. Leveau, L.M., Gorleri, F.C., Roesler, I. et al. What makes an urban raptor?. Ibis, 2022, 164(4): 1213-1226. DOI:10.1111/ibi.13062
    6. Curtis, J.R., Robinson, W.D., Rompré, G. et al. Urbanization is associated with unique community simplification among birds in a neotropical landscape. Landscape Ecology, 2022, 37(1): 209-231. DOI:10.1007/s10980-021-01344-1
    7. Callaghan, C.T., Cornwell, W.K., Poore, A.G.B. et al. Urban tolerance of birds changes throughout the full annual cycle. Journal of Biogeography, 2021, 48(6): 1503-1517. DOI:10.1111/jbi.14093
    8. Healy, S.D.. Adaptation and the brain. Adaptation and the Brain, 2021. DOI:10.1093/oso/9780199546756.001.0001
    9. Neate-Clegg, M.H.C., Stuart, S.N., Mtui, D. et al. Afrotropical montane birds experience upslope shifts and range contractions along a fragmented elevational gradient in response to global warming. Plos One, 2021, 16(3 March): e0248712. DOI:10.1371/journal.pone.0248712
    10. Patankar, S., Jambhekar, R., Suryawanshi, K.R. et al. Which traits influence bird survival in the city? A review. Land, 2021, 10(2): 1-23. DOI:10.3390/land10020092
    11. Salinas-Ramos, V.B., Agnelli, P., Bosso, L. et al. Body size variation in italian lesser horseshoe bats rhinolophus hipposideros over 147 years: Exploring the effects of climate change, urbanization and geography. Biology, 2021, 10(1): 1-10. DOI:10.3390/biology10010016
    12. Morozov, N.S.. THE ROLE OF PREDATORS IN SHAPING URBAN BIRD POPULATIONS. 1. WHO SUCCEEDS IN URBAN LANDSCAPES? | [РОЛЬ ХИЩНИКОВ В ФОРМИРОВАНИИ ГОРОДСКИХ ПОПУЛЯЦИЙ ПТИЦ. 1. КТО ПРЕУСПЕВАЕТ В ОСВОЕНИИ УРБОЛАНДШАФТОВ?]. Zoologicheskii Zhurnal, 2021, 100(11): 1236-1261. DOI:10.31857/S004451342111009X
    13. Depasquale, C., Li, X., Harold, M. et al. Selection for increased cranial capacity in small mammals during a century of urbanization. Journal of Mammalogy, 2020, 101(6): 1706-1710. DOI:10.1093/jmammal/gyaa121
    14. Reichard, D.G., Atwell, J.W., Pandit, M.M. et al. Urban birdsongs: higher minimum song frequency of an urban colonist persists in a common garden experiment. Animal Behaviour, 2020. DOI:10.1016/j.anbehav.2020.10.007
    15. Sayol, F., Sol, D., Pigot, A.L. Brain Size and Life History Interact to Predict Urban Tolerance in Birds. Frontiers in Ecology and Evolution, 2020. DOI:10.3389/fevo.2020.00058
    16. Tryjanowski, P., Morelli, F., Møller, A.P. URBAN BIRDS: Urban avoiders, urban adapters, and urban exploiters. Routledge Handbook of Urban Ecology Second Edition, 2020. DOI:10.4324/9780429506758-34
    17. Callaghan, C.T., Major, R.E., Wilshire, J.H. et al. Generalists are the most urban-tolerant of birds: a phylogenetically controlled analysis of ecological and life history traits using a novel continuous measure of bird responses to urbanization. Oikos, 2019, 128(6): 845-858. DOI:10.1111/oik.06158
    18. Ducatez, S., Sayol, F., Sol, D. et al. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists?. Integrative and Comparative Biology, 2018, 58(5): 929-938. DOI:10.1093/icb/icy101
    19. Minias, P., Włodarczyk, R., Minias, A. et al. How birds colonize cities: genetic evidence from a common waterbird, the Eurasian coot. Journal of Avian Biology, 2017, 48(8): 1095-1103. DOI:10.1111/jav.01334
    20. Kozlovsky, D.Y., Weissgerber, E.A., Pravosudov, V.V. What makes specialized food-caching mountain chickadees successful city slickers?. Proceedings of the Royal Society B Biological Sciences, 2017, 284(1855): 20162613. DOI:10.1098/rspb.2016.2613
    21. González-Lagos, C., Quesada, J. Stay or leave? Avian behavioral responses to urbanization in Latin America. Avian Ecology in Latin American Cityscapes, 2017. DOI:10.1007/978-3-319-63475-3_6
    22. Hutton, P., McGraw, K.J. Urban-rural differences in eye, bill, and skull allometry in house finches (haemorhous mexicanus). Integrative and Comparative Biology, 2016, 56(6): 1215-1224. DOI:10.1093/icb/icw077
    23. Symonds, M.R.E., Weston, M.A., van Dongen, W.F.D. et al. Time since urbanization but not encephalisation is associated with increased tolerance of human proximity in birds. Frontiers in Ecology and Evolution, 2016, 4(OCT): 117. DOI:10.3389/fevo.2016.00117
    24. Zhao, Q., Sun, Y. Behavioral plasticity is not significantly associated with head volume in a wild Chestnut Thrush (Turdus rubrocanus) population. Avian Research, 2016, 7(1): 12. DOI:10.1186/s40657-016-0048-z
    25. Geffroy, B., Samia, D.S.M., Bessa, E. et al. How Nature-Based Tourism Might Increase Prey Vulnerability to Predators. Trends in Ecology and Evolution, 2015, 30(12): 755-765. DOI:10.1016/j.tree.2015.09.010
    26. Møller, A.P., Díaz, M., Flensted-Jensen, E. et al. Urbanized birds have superior establishment success in novel environments. Oecologia, 2015, 178(3): 943-950. DOI:10.1007/s00442-015-3268-8

    Other cited types(0)

Catalog

    Johannes Erritzøe

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(3)  /  Tables(3)

    Article Metrics

    Article views (249) PDF downloads (19) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return