Background In biological systems, biological diversity often displays a rapid turn-over across elevations. This defining feature has made mountains classic systems for studying the spatial variation in diversity. Because patterns of elevational diversity can vary among lineages and mountain systems it remains difficult to extrapolate findings from one montane region to another, or among lineages. In this study, we assessed patterns and drivers of avian diversity along an elevational gradient on the eastern slope of Mt. Gongga, the highest peak in the Hengduan Mountain Range in central China, and a mountain where comprehensive studies of avian diversity are still lacking.
Methods We surveyed bird species in eight 400-m elevational bands from 1200 to 4400 m a.s.l. between 2012 and 2017. To test the relationship between bird species richness and environmental factors, we examined the relative importance of seven ecological variables on breeding season distribution patterns: land area (LA), mean daily temperature (MDT), seasonal temperature range (STR), the mid-domain effect (MDE), seasonal precipitation (SP), invertebrate biomass (IB) and enhanced vegetation index (EVI). Climate data were obtained from five local meteorological stations and three temperature/relative humidity smart sensors in 2016.
Results A total of 219 bird species were recorded in the field, of which 204 were recorded during the breeding season (April-August). Species richness curves (calculated separately for total species, large-ranged species, and small-ranged species) were all hump-shaped. Large-ranged species contributed more to the total species richness pattern than small-ranged species. EVI and IB were positively correlated with total species richness and small-ranged species richness. LA and MDT were positively correlated with small-ranged species richness, while STR and SP were negatively correlated with small-ranged species richness. MDE was positively correlated with large-ranged species richness. When we considered the combination of candidate factors using multiple regression models and model-averaging, total species richness and large-ranged species richness were correlated with STR (negative) and MDE (positive), while small-ranged species richness was correlated with STR (negative) and IB (positive).
Conclusions Although no single key factor or suite of factors could explain patterns of diversity, we found that MDE, IB and STR play important but varying roles in shaping the elevational richness patterns of different bird species categories. Model-averaging indicates that small-ranged species appear to be mostly influenced by IB, as opposed to large-ranged species, which exhibit patterns more consistent with the MDE model. Our data also indicate that the species richness varied between seasons, offering a promising direction for future work.