Xiaodan Wang, Fenliang Kuang, Kun Tan, Zhijun Ma. 2018: Population trends, threats, and conservation recommendations for waterbirds in China. Avian Research, 9(1): 14. DOI: 10.1186/s40657-018-0106-9
Citation: Xiaodan Wang, Fenliang Kuang, Kun Tan, Zhijun Ma. 2018: Population trends, threats, and conservation recommendations for waterbirds in China. Avian Research, 9(1): 14. DOI: 10.1186/s40657-018-0106-9

Population trends, threats, and conservation recommendations for waterbirds in China

Funds: 

This study was fnancially supported by the National Natural Science Foundation of China 31572280

This study was fnancially supported by the National Natural Science Foundation of China 31071939

More Information
  • Corresponding author:

    Ma Zhijun, zhijunm@fudan.edu.cn

  • Received Date: 16 Jan 2018
  • Accepted Date: 10 Apr 2018
  • Available Online: 24 Apr 2022
  • Publish Date: 27 Apr 2018
  • Background 

    China is one of the countries with abundant waterbird diversity. Over the past decades, China’s waterbirds have suffered increasing threats from direct and indirect human activities. It is important to clarify the population trends of and threats to waterbirds as well as to put forward conservation recommendations.

    Methods 

    We collected data of population trends of a total of 260 waterbird species in China from Wetlands International database. We calculated the number of species with increasing, declining, stable, and unknown trends. We collected threatened levels of waterbirds from the Red List of China’s Vertebrates (2016), which was compiled according to the IUCN criteria of threatened species. Based on literature review, we refined the major threats to the threatened waterbird species in China.

    Results 

    Of the total 260 waterbird species in China, 84 species (32.3%) exhibited declining, 35 species (13.5%) kept stable, and 16 species (6.2%) showed increasing trends. Population trends were unknown for 125 species (48.1%). There was no significant difference in population trends between the migratory (32.4% decline) and resident (31.8% decline) species or among waterbirds distributed exclusively along coasts (28.6% decline), inland (36.6% decline), and both coasts and inland (32.5% decline). A total of 38 species (15.1% of the total) were listed as threatened species and 27 species (10.8% of the total) Near Threatened species. Habitat loss was the major threat to waterbirds, with 32 of the total 38 (84.2%) threatened species being affected. In addition, 73.7% (28 species), 71.1% (27 species), and 57.9% (22 species) of the threatened species were affected by human disturbance, environmental pollution, and illegal hunting, respectively.

    Conclusions 

    We propose recommendations for waterbird conservation, including (1) strengthening conservation of nature wetlands and restoration of degraded wetlands, (2) enhancing public awareness on waterbird conservation, (3) improving the enforcement of Wildlife Protection Law and cracking down on illegal hunting, (4) carrying out long-term waterbird surveys to clarify population dynamics, (5) restoring populations of highly-threatened species through artificial intervention, and (6) promoting international and regional exchanges and cooperation to share information in waterbirds and their conservation.

  • The evolution of life-history is mainly determined by the trade-off between key life-history traits to optimize the fitness, which should play critical roles in the survival and reproduction of birds (Lack 1948). Therefore, understanding variation between key traits among species has always been the main research subject of avian life-history evolution (Partridge and Harvey 1988; Martin 2004, 2015). Life history traits associated with reproduction, such as clutch size, egg colors and nest sites, can provide insights into resolving problems related to assessing population status and conservation (Martin 2002).

    Parrotbills are mainly distributed in China, where 19 species have been found (Alström et al. 2006, 2013; Robson 2014; Zheng 2017). Among them, the Three-toed Parrotbill (Cholornis paradoxus), Spectacled Parrotbill (Sinosuthora conspicillata), Rusty-throated Parrotbill (S. przewalskii) and Grey-hooded Parrotbill (S. zappeyi) are endemic to China (Lei and Lu 2006; Robson 2014; Zheng 2017). Until now, life history information about this group is limited. Detailed breeding information is available in only six species, including Vinous-throated Parrotbill (Sinosuthora webbianus; Kim et al. 1995; Guo et al. 2006; Lee et al. 2010; Lee and Jabloński 2012; Robson 2014), Reed Parrotbill (Paradoxornis heudei; Wang and Zhou 1988; Dong et al. 2010; Boulord et al. 2011), Grey-hooded Parrotbill (Jiang et al. 2009), Ashy-throated Parrotbill (S. alphonsianus; Yang et al. 2010), Golden Parrotbill (Suthora verreauxi; Yang et al. 2011) and Fulvous Parrotbill (S. fulvofrons; Hu et al. 2014). There are also a few descriptions about the nests or eggs in 10 species, such as Great Parrotbill (Conostoma oemodium), Brown-winged Parrotbill (Sinosuthora brunneus) and Black-breasted Parrotbill (Paradoxornis flairostris; Li et al. 2014; Robson 2014; Zhu 2014).

    The Spectacled Parrotbill is a relatively small and long-tailed parrotbill, which contains two subspecies, the nominated subspecies S. c. conspicillatus and S. c. rocki. It only occurs in quite limited areas in China, and the Lianhuashan National Nature Reserve is the center of this bird's distribution area (Zhao 2001). To our knowledge, there is still limited breeding information of the Spectacled Parrotbill (Zhao 2001; Robson 2014). In this study, we described the breeding biology of this bird in detail.

    Our study was conducted in the experimental zone of the Lianhuashan National Nature Reserve in Gansu Province, China (34°57′–34°58′N, 103°46′–103°47′E, Fig. 1). The altitude ranges from 2200 to 2400 m a.s.l. The annual precipitation is about 650 mm, which is largely concentrated during the summer (from June to August). Snow cover lasts from November to early April in the following year. Mean annual temperature is about 5.1–6.0 ℃, with a maximum of 34 ℃ and a minimum of − 27.1 ℃ (Sun et al. 2008). The study area is 300 ha, fragmented by patch agricultural lands. The habitat is mainly covered by shrubs, which consists of many kinds of willows (Salix spp.), sea buckthorns (Hippophae rhamnoides), roses (Rosa spp.) and honeysuckles (Lonicera spp.), and some arbor trees distributed sporadically around the sites, including oaks (Ouercus liaotungensis), spruces (Picea asperata), firs (Abies fargesii) and birches (Betula utilis) (Sun et al. 2008).

    Figure  1.  The nest site distribution of Spectacled Parrotbill in 2013 (yellow filled circle), 2014 (blue filled circle) and 2015 (light blue filled circle) in Lianhuashan National Nature Reserve, Gansu Province, China. The numbers in upper and lower of right side were nest ID following Table 1
    Table  1.  Nests of Spectacled Parrotbill in Lianhuashan Nature Reserve, Gansu Province, China
    Nest ID Date found Status when found Date of first egg Clutch size Nestlings Fledglings Nest fate
    1 25 May 2013 Incubation 18 May 2013b 5 5 5 Success
    2 18 April 2014 Egg laying 18 April 2014a 5 4 4 Success
    3 24 April 2014 Incubation 18 April 2014b 5 0 Eggs destroyed
    4 28 April 2014 Nest complete 1 May 2014a 5 3 0 Nestlings preyed
    5 27 May 2014 Nest complete 30 May 2014a 3 0 Eggs destroyed
    6 16 May 2014 Nestling period 30 April 2014b 4 4 0 Nestlings preyed
    7 5 June 2014 Nestling period 17 May 2014b 3 3 3 Success
    8 19 April 2015 Nest complete 11 April 2015a 4 0 Abandoned
    9 19 April 2015 Early construction 23 April 2015a 2 0 Abandonedc
    10 8 May 2015 Egg laying 5 May 2015b 5 5 5 Success
    11 4 May 2015 Incubation 13 April 2015b 4 0 Eggs destroyed
    12 14 May 2015 Nestling period 23 April 2015b 5 5 5 Success
    13 29 July 2015 Nestling fledging 28 June 2015b Success
    14 13 June 2015 Incubation 27 May 2015b 5
    15 13 April 2015 Nest empty
    16 27 April 2015 Nest empty
    a Estimated laying date of first egg
    b The observed laying date of first egg
    c Nest No. 9 was abandoned due to frequent visit, and was excluded in the calculation of clutch size
     | Show Table
    DownLoad: CSV

    We conducted our field study from May to August in 2013, and from April to August in 2014 and 2015. We searched the nests using combined methods (vocal and individuals' clues) of systematically searching all trails throughout the study area (Martin and Geupel 1993). When an active nest was located, we marked the position with blue rubber belt 10 m away from the nest, and then we checked all nests at every 3–5 days to record the laying date of first egg, clutch size, and hatching date. The first-egg date was estimated by the observed hatching date and egg mass (unpublished data), and hatching date was estimated by nestling mass (unpublished data). Shortly after completion of clutches, we measured egg weights to the nearest 0.01 g with a portable electronic scale, and egg size to 0.01 mm with vernier caliper. We calculated the minimum mean clutch size from observed number of nestlings and or eggs, assuming no more eggs were laid or nestlings hatched (Jiang et al. 2009). We measured nestling mass every other day in order to monitor nestling growth and measured other body measures (such as beak length, tarsus length, wing length) when nestlings were 10 days old. We observed the nest attendance behavior using cameras (AONI Q721 mini camera, Shenzhen, China) and 10 × 25 binoculars at a distance of 10–15 m to reduce human disturbance. We defined successful nests as those having at least one nestling fledged and unsuccessful nests as those abandoned or depredated (Yang et al. 2011).

    We also sampled plant coverage around nest sites, nest height above ground, and tree species and height as illustrated by Hu et al. (2017). The coverage and nest size were measured after nestlings fledged or nest fate was confirmed. Finally, the nests and their contents were collected. Sample sizes varied for different parameters because we could not inspect and measure all the nests regularly. We did not find enough nests each year to compare the number of nests among years, so we pooled all 3 years' data together. All the data were presented as mean ± standard deviation in the following.

    We found a total of 16 nests during 3 years (1 nest in 2013, 6 in 2014, and 9 in 2015), and almost all nests (except 2 nests) were distributed within a 300-ha area (Fig. 1). All nests were located in the shrubs. Shrub coverage around the nests was 45% in average (n = 16). The main nest trees were artificial spruce saplings (6 nests) and honeysuckles (4 nests). The height of nest trees averaged 1.57 ± 0.53 m (range: 0.8–2.6 m, n = 16), and nest height was 0.89 ± 0.47 m (range: 0.4–2.3 m, n = 16) above the ground level. Nests were cup-shaped (Fig. 2bd), and the outer and inner diameter of the nest were 8.00 ± 0.76 and 4.62 ± 0.49 cm (n = 6), respectively. The inside depth was 5.20 ± 0.13 cm and the outside height was 8.30 ± 0.41 cm (n = 6). Nest materials mainly consisted of leaves, fine strips of bark and some grasses. The interior of nest was normally covered with finer materials, occasionally with animal hair (Fig. 2b). Nests were constructed by both sexes over a period of several days (11 days in one nest). Parrotbills approached the nest sites cautiously and inspected the surroundings when they brought materials.

    Figure  2.  The adult bird (a), eggs and nest (b), incubation (c) and 7-day-old nestlings (d) of Spectacled Parrotbill (photographed by Lijun Chen)

    Of the 16 nests, 14 were active. Among them, one nest was found with eggs in 2013; two nests were found after the completion of nest construction, two nests were found with eggs and two nests with nestlings in 2014; two nests were found during the nesting period, three nests were found with eggs, two nests with nestlings, and two nests were empty in 2015 (Table 1). The first egg laying dates were mainly in April (n = 7) and May (n = 6), with only one in June. Eggs were laid 2–3 days after the completion of nest construction (n = 3). Egg laying happened normally in the morning before 10:30 (n = 10), and eggs were laid once per day (n = 5). The clutch size was 4.42 ± 0.79 eggs (range: 3–5 eggs, n = 12). We found a total of 55 eggs in 13 nests and measured 27 eggs in 6 nests. The eggs were oval shaped and in pale blue color without spots (Fig. 2b). The mean egg mass was 1.25 ± 0.07 g (range: 1.03–1.36 g, n = 27), the mean egg length was 15.56 ± 0.46 mm (range: 14.72–16.49 mm, n = 27), and the mean egg width was 12.46 ± 0.29 mm (range: 11.97–13.01 mm, n = 27).

    Incubation began when clutches were completed, and all lasted 13 days (n = 3). The nestling periods was 13–14 days (according to data of 2 nests). Based on measurements of four nestlings from one nest, the chick mass was 1.48 ± 0.35 g at the first day, 2.56 ± 0.09 g at the second day, 5.57 ± 0.91 g at the fifth day, 7.09 ± 0.68 g at the seventh day, and 7.90 ± 0.94 g at the tenth day. At ten-day age, the beak length, body length, wing length, tarsus length, tail length was 6.37 ± 0.24, 42.95 ± 4.42, 31.76 ± 3.20, 21.20 ± 0.32 and 10.91 ± 3.07 mm, respectively.

    Among the 14 active nests, the fate of one nest was unknown, six nests fledged successfully, two nests were deserted during egg laying period, three nests were destroyed by predators during incubation, and two nests were depredated during the nestling stages. As recorded by cameras (n = 5, including nests No. 2, 6, 7, 12 and 13 in Table 1), nestlings were depredated by a Red-winged Crested Cuckoo (Clamator coromandus) in one nest. The rate of nest success was 46% (6/13). Among those failed nests, nest predation rate was 71% (5/7), accounting for nearly three quarters of nest failure, and nest desertion (29%, 2/7) accounted for other one quarter of nest failure.

    This study descripted breeding information of Spectacled Parrotbill in detail. Spectacled Parrotbill nested in many kinds of habitat types, mainly in shrubs. Both parents constructed nest with materials of leaves, barks and animal hairs. Their eggs were pale blue eggs without speckles, both incubation and nestling periods were about 13 days long, and rate of nest success was almost 50%. The breeding pattern of Spectacled Parrotbill was similar to other parrotbills, but they also had their own roles.

    The Spectacled Parrotbill can construct their nests in various kinds of habitats, making them distribute relatively wider than bamboo-habitat specialized parrotbills. The breeding habitats of other known parrotbill species are normally limited to bamboo thickets or closely associated with reed habitats, such as Grey-hooded Parrotbill (Jiang et al. 2009), Fulvous Parrotbill (Hu et al. 2014) and Reed Parrotbill (Boulord et al. 2011; Xiong and Lu 2013). Normally, habitat specialists have limited distribution ranges with weak dispersal abilities and specific habitat requirement, sensitive to habitat disturbance or fragmentation (Warren et al. 2001; Julliard et al. 2006). Unlike the habitat specialists, the Spectacled Parrotbill is a kind of habitat generalist, which inhabits in dense grass, shrub or bamboo and reed habitat, making their population less sensitive to habitat disturbance. This is also found in Ashy-throated Parrotbill and Vinous-throated Parrotbill (Kim et al. 1995; Yang et al. 2010, 2011).

    Spectacled Parrotbill has a moderate nest predation rate (38.46%), but accounting for a large proportion of the nest failure (71.43%), which was much higher than that of Golden Parrotbill (44.44%) and Fulvous Parrotbill (18.18%) (Yang et al. 2011; Hu et al. 2014). This may relate to their different nest habitats, because Spectacled Parrotbill builds their nests in shrubs, which are more easily detected by predators, while the latter two build their nests within the bamboo thickets (Yang et al. 2011; Hu et al. 2014). Furthermore, the clutch size of Spectacled Parrotbill (4.42 ± 0.79, n = 12) was larger than Golden Parrotbill (3.50 ± 0.67, n = 12; Yang et al. 2011), Fulvous Parrotbills (3.38 ± 0.72, n = 16; Hu et al. 2014) and Grey-hooded Parrotbill (3.16 ± 0.8, n = 8; Jiang et al. 2009). The high nest predation in Spectacled Parrotbill may relate to their relatively large clutch size, because visiting rates of insectivorous birds were correlated to the number of eggs and nestlings, and high visiting rates may incur more predation risk (Skutch 1949; Martin 2015). We therefore suggest that the larger clutch size and nest habitat may play important roles in explaining nest predation of Spectacled Parrotbill. Unfortunately, we have little data for parental care of these species so further comparisons are impossible.

    In regard to the nest desertion rate, Spectacled Parrotbill (28.57%) is also higher than that of Golden Parrotbills (16.67%), but lower than that of Fulvous Parrotbill (66.67%) (Yang et al. 2011; Hu et al. 2014). The high rate of nest desertion in Fulvous Parrotbill was caused by tourist activities in Wawushan Nature Reserve (Hu et al. 2014). As to Spectacled Parrotbill, the nest desertion may be due to the human activities from consecutive disturbance of observers or passers-by and existence of cameras, or due to the existence of predator (personal observation), which needs further investigation.

    Spectacled Parrotbill has pale blue and immaculate eggs, which is in accordance with the closely related Grey-hooded Parrotbill (Jiang et al. 2009; Yeung et al. 2011), Golden Parrotbill (Yang et al. 2011), and Fulvous Parrotbill (Hu et al. 2014), but is different from some larger parrotbills, which have speckled eggs (Chen et al. 2016). The mechanisms of egg colors are complex. Although we did not observe egg polymorphism and brood parasitism in Spectacled Parrotbill, we cannot exclude that egg color may be driven by parasitism (Yang et al. 2010). Other mechanisms, like cryptic hypothesis (Underwood and Sealy 2002) and post-mating sexually-selected hypothesis (Moreno and Osorno 2003), are still remained to be explored.

    In present study, we reported the breeding information of Spectacled Parrotbill, including nest site, clutch size, nest construction, egg, nestling and nest fate, which should be helpful for further research about population and conservation of this bird.

    LC, LZ, YH and PL conducted field works, LC, NL and YS analyzed the data and drafted the manuscript. All authors read and approved the final manuscript.

    We thank the staff of the Lianhuashan Nature Reserve for their assistance in the field.

    The authors declare that they have no competing interests.

    The datasets used in the present study are available from the corresponding author on reasonable request.

    Not applicable.

    The experiments comply with the current laws of China in which they were performed.

  • The State Forestry Administration. China national wetlands conservation action plan. Beijing: China Forestry Publishing House; 2000 (in Chinese).
    The State Forestry Administration. China wetlands resources master volume. Beijing: China Forestry Publishing House; 2015 (in Chinese).
    Amano T, Székely T, Sandel B, Nagy S, Mundkur T, Langendoen T, Blanco D, Soykan CU, Sutherland WJ.2017. Successful conservation of global waterbird populations depends on effective governance. Nature, 553:199-202.
    An SQ, Li HB, Guan BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Liu YH, Xu C, Fang SB, Jiang JH, Li HL.2007. China's natural wetlands: past problems, current status, and future challenges. Ambio, 36:335-42.
    Bai QQ, Chen JZ, Chen ZH, Dong GT, Dong JT, Dong WX, Fu YQ, Han YX, Lu G, Li J, Liu Y, Lin Z, Meng DR, Martinez J, Ni GH, Shan K, Sun RJ, Tian SX, Wang FQ, Xu ZW, Yu YT, Yang J, Yang ZD, Zhang L, Zhang M, Zeng XW.2015. Identification of coastal wetlands of international importance for waterbirds: a review of China Coastal Waterbird Surveys 2005‒2013. Avian Res, 6:12.
    Barter M. Shorebirds of the Yellow Sea: importance, threats and conservation status. Canberra: Wetlands International; 2002.
    Both C, Visser ME.2001. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature, 411:296-8.
    Cao WZ, Wong MH.2007. Current status of coastal zone issues and management in China: a review. Environ Int, 33:985-92.
    Chen SH, Ding P. Waterbirds in China. Beijing: China Forestry Publishing House; 2008 (in Chinese).
    Chen L, He FQ.2011. Are they hybrids of Sterna bergii×Sterna bernsteini? Chin Birds, 2:152-6.
    Chen HL, Li YB, Li ZJ, Shi JZ, Shinya K, Deng GH, Qi QL, Tian GB, Fan SF, Zhao HD, Sun YX, Kawaoka Y.2006. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol, 80:5976-83.
    Chen SH, Fan ZY, Lu YW, Huang Q.2014. Conservation and restoration of critically endangered Sterna bernsteini. Zhejiang For, B02: 20-1 (in Chinese).
    Chen SH, Fan ZY, Roby DD, Lu YW, Chen CS, Huang Q, Cheng LJ, Zhu J.2015. Human harvest, climate change and their synergistic effects drove the Chinese Crested Tern to the brink of extinction. Glob Ecol Conserv, 4:137-45.
    Crighton P.2016. Bird mortality in fish nets at a significant stopover site of the Spoon-billed Sandpiper Calidris pygmaea in the Yellow Sea, China. Stilt, 69-70:74-6.
    Duan YB, Tian XH, Ma JZ, Zhu SY, Shai K.2015. Foraging habitat use of the oriental white storks during their breeding season. Acta Ecol Sin, 35:2628-34 (in Chinese).
    Galbraith H, Jones R, Park R, Clough J, Herrod JS, Harrington B, Page G.2002. Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds, 25:173-83.
    Gan XJ, Li B, Chen JK, Ma ZJ.2007. The ecological effects of biological invasions on birds. Biodivers Sci, 15:548-57 (in Chinese).
    Gan XJ, Cai YT, Choi CY, Ma ZJ, Chen JK, Li B.2009. Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance. Estuar Coast Shelf Sci, 83:211-8.
    Gilroy JJ, Gill JA, Butchart SHM, Jones VR, Franco AMA.2016. Migratory diversity predicts population declines in birds. Ecol Lett, 19:308-17.
    Hallmann CA, Foppen RPB, vanTurnhout CAM, de Kroon H, Jongejans E.2014. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature, 511:341-3.
    He FQ, Ren YQ.2011. Taolimiao Alashan-Nur Larus relictus seek development in the adversity. China Nat, 5:48-9 (in Chinese).
    Hu XX, Han ZH, Zhou YK, Cheng JP, Wang WH.2005. Distribution of organochlorine pesticides in surface sediments from Huangpu River and its risk evaluation. Environ Sci, 26:44-8 (in Chinese).
    Hua N, Tan K, Chen Y, Ma ZJ.2015. Key research issues concerning the conservation of migratory shorebirds in the Yellow Sea region. Bird Conserv Int, 25:38-52.
    Iwamura T, Possingham HP, Chadès I, Minton C, Murray NJ, Rogers DI, Treml EA, Fuller RA.2013. Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proc Roy Soc B Biol Sci, 280:1-8.
    Jiang S, Pang L, Huang C.2007. The harm and prevention of exotic Procambarus clarkii. Bull Biol, 42:15-6 (in Chinese).
    Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG.2016. Red list of China's vertebrates. Biodivers Sci, 24:500-51 (in Chinese).
    Li DL, Chen SH, Guan L, Lioyd H, Liu YL, Lv JZ, Zhang ZW.2011. Patterns of waterbird community composition across a natural and restored wetland landscape mosaic, Yellow River Delta, China. Estuar Coast Shelf Sci, 91:325-32.
    Li DL, Liu Y, Sun XH, Lloyd H, Zhu SY, Zhang SY, Wan DM, Zhang ZW.2017. Habitat-dependent changes in vigilance behaviour of Red-crowned Crane influenced by wildlife tourism. Sci Rep, 7:16614.
    Li YF, Ye XP, Wang M, Li X, Dong R, Huo ZP, Yu XP.2018. Survival rates of a reintroduced population of the Crested Ibis Nipponia nippon in Ningshan County (Shaanxi, China). Bird Conserv Int, 28:145-56.
    Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF.2005. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science, 309:1206.
    Liu HY, Li ZF, Li XM.2007. Ecological effects on Oriental White Stork (Ciconia boyciana) with habitat loss in sub-Sanjiang Plain, China. Acta Ecol Sin, 27:2678-83.
    Luo JM, Wang YJ, Yang F, Liu ZJ.2012. Effects of human disturbance on the Hooded Crane (Grus monacha) at stopover sites in northeastern China. Chin Birds, 3:206-16.
    Ma ZJ.2017. The importance of habitat protection for bird conservation. Bull Biol, 52:6-8 (in Chinese).
    Ma MR, Zhang T, Blank D, Ding P, Zhao XM.2012. Geese and ducks killed by poison and analysis of poaching cases in China. Goose Bull, 15:2-11.
    Ma ZJ, Cheng YX, Wang JY, Fu XH.2013. The rapid development of birdwatching in mainland China: a new force for bird study and conservation. Bird Conserv Int, 23:259-69.
    Ma ZJ, Melville D, Liu J, Chen Y, Yang H, Ren W, Zhang Z, Piersma T, Li B.2014. Rethinking China's new great wall. Science, 346:912-4.
    Melville DS, Chen Y, Ma ZJ.2016. Shorebirds along the Yellow Sea coast of China face an uncertain future—a review of threats. Emu, 116:100-10.
    Murray NJ, Fuller RA.2015. Protecting stopover habitat for migratory shorebirds in East Asia. J Ornithol, 156:217-25.
    Peng HB, Choi CY, Zhang L, Gan XJ, Liu WL, Jing LI, You CC, Wang SL, Ma ZJ.2017. Distribution and conservation status of the Spoon-billed Sandpiper in China. Chin J Zool, 1:158-66 (in Chinese).
    Piersma T, Lok T, Chen Y, Hassell CJ, Yang HY, Boyle A, Slaymaker M, Chan YC, Melville DS, Zhang ZW, Ma ZJ.2016. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J Appl Ecol, 53:479-90.
    Piersma T, Chan YC, Mu T, Hassell CJ, Melville DS, Peng HB, Ma ZJ, Zhang ZW, Wilcove DS.2017. Loss of habitat leads to loss of birds: reflections on the Jiangsu, China, coastal development plans. Wader Study, 124:93-8.
    Stokstad E.2018. China moves to protect coastal wetlands used by migratory birds. Science, 359:500-2.
    Studds CE, Kendall BE, Murray NJ, Wilson HB, Rogers DI, Clemens RS, Gosbell K, Hassell CJ, Jessop R, Melville DS, Milton DA, Minton CDT, Possingham HP, Riegen AC, Straw P, Woehler EJ, Fuller RA.2017. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat Commun, 8:14895.
    Sun JH, Wang GL, Zhang G, Li J, Chai Y, Wang JZ, Duan YP.2007. Distribution of organochlorine pesticides in surface sediments from the middle and lower reaches of the Yellow River. Environ Sci, 28:1332-7 (in Chinese).
    Sun CZ, Zhen L, Wang C, Yan BY, Cao XC, Wu RZ.2015. Impacts of ecological restoration and human activities on habitat of overwintering migratory birds in the wetland of Poyang Lake, Jiangxi Province, China. J Mt Sci, 12:1302-14.
    Sung YH, Tse WL, Yu YT.2018. Population trends of the Black-faced Spoonbill Platalea minor: analysis of data from international synchronised censuses. Bird Conserv Int, 28:157-67.
    Thomas GH, Lanctot RB, Szekely T.2006. Can intrinsic factors explain population declines in North American breeding shorebirds? A comparative analysis. Anim Conserv, 9:252-8.
    Tian JL, He FY, Wang JQ, Yang J, Jin YP.2004. Influence of fire in 2001 on the inhabit and breeding of Red-crowned Crane in Zhalong Nature Reserve. For Sci Technol, 29:29-31 (in Chinese).
    Tian S, Xu XL, Liu ST, Zhang SP.2016. The influence of Dalai Lake area change on waterbird community. Sichuan J Zool, 35:201-9 (in Chinese).
    Wang Z, Li ZQ, Beauchamp G, Jiang ZG.2011. Flock size and human disturbance affect vigilance of endangered Red-crowned Cranes (Grus japonensis). Biol Conserv, 144:101-5.
    Wang C, Liu DP, Qing BP, Ding HH, Cui YY, Ye YX, Lu J, Yan L, Ke L, Ding CQ.2014. The current population and distribution of wild Crested Ibis Nipponia nippon. Chin J Zool, 49:666-71 (in Chinese).
    Wang WJ, Fraser JD, Chen JK.2017. Wintering waterbirds in the middle and lower Yangtze River floodplain: changes in abundance and distribution. Bird Conserv Int, 2:167-86.
    Wetlands International. Waterbird population estimates 5th ed. 2012. . Accessed 20 Oct 2017.
  • Xi JP. Secure a decisive victory in building a moderately prosperous society in all respects and strive for the great success of socialism with Chinese characteristics for a new era. 2017. . Accessed 22 Oct 2017 (in Chinese).
    Xi YM, Lu BZ, Fujihara N.2009. Captive rearing and breeding of the Crested Ibis, Nipponia nippon. J Poult Sci, 38:213-24.
    Xu ZH.2010. Experimental study on treatment of Spartina alterniflora in Fujian. Mar Environ Sci, 29:767-9 (in Chinese).
    Yang HY, Chen B, Barter M, Piersma T, Zhou CF, Li FS, Zhang ZW.2011. Impacts of tidal land reclamation in Bohai Bay, China: ongoing losses of critical Yellow Sea waterbird staging and wintering sites. Bird Conserv Int, 21:241-59.
    Yu YT, Swennen C.2004. Feeding of wintering Black-faced Spoonbills in Hong Kong: when and how long? Waterbirds, 27:135-40.
    Yu H, Wang X, Cao L, Zhang L, Jia Q, Lee H, Xu ZG, Liu GH, Xu WB, Hu BH, Fox AD.2017. Are declining populations of wild geese in China 'prisoners' of their natural habitats? Curr Biol, 27:376-7.
    Zeng ZY.2012. Warning from the poisoned 21 Oriental White Storks incident. Green Vis, 12:1 (in Chinese).
    Zeng Q, Wei Q, Lei GC.2018. Contribution of citizen science towards cryptic species census: "many eyes" define wintering range of the Scaly-sided Merganser in mainland China. Avian Res, 9:6.
    Zhang LL, Zhou LZ.2012. Genetic structure of wintering Hooded Cranes (Grus monacha) based on mitochondrial DNA D-loop sequences. Chin Birds, 3:71-8.
    Zhang B, Fang SG, Xi YM.2004. Low genetic diversity in the endangered Crested Ibis Nipponia nippon and implications for conservation. Bird Conserv Int, 14:183-90.
    Zhang M, Zou FS, Zhang GD, Chen S, Li ZR.2010. Human disturbance effect on Black-faced Spoonbill Platalea minor wintering in Macao. Chin J Zool, 45:75-81 (in Chinese).
    Zhang Y, Cao L, Barter M, Fox AD, Zhao MJ, Meng FJ, Shi HQ, Jiang Y, Zhu WZ.2011. Changing distribution and abundance of Swan Goose Anser cygnoides in the Yangtze River floodplain: the likely loss of a very important wintering site. Bird Conserv Int, 21:36-48.
    Zhang L, Wang X, Zhang JJ, Ouyang ZJ, Chan S, Crosby M, Watkins D, Martinez J, Su LY, Yu YT, Judit S, Cao L, Fox AD.2017. Formulating a list of sites of waterbird conservation significance to contribute to China's ecological protection red line. Bird Conserv Int, 27:153-66.
    Zhao ZH, Zhang L, Wu JL.2016. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments from lakes along the middle-lower reaches of the Yangtze River and the Huaihe River of China. Limnol Oceanogr, 61:47-60.
    Zheng GM. A checklist on the classification and distribution of the birds of China. 3rd ed. Beijing: Science Press; 2017 (in Chinese).
    Zhi H, Zhao ZH, Zhang L.2015. The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China. Chemosphere, 119:1134-40.

Catalog

    Figures(1)  /  Tables(5)

    Article Metrics

    Article views (625) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return