Background The most dominant global threat to natural forests and their biodiversity is land-cover change, which has negative impacts on both species persistence and ecosystem functions. Land-cover change could alter animal behaviour and disrupt seed dispersal mutualisms. However, its effects on the role of bird functional traits in seed dispersal are not well studied.
Methods In the present study, we assessed the contributions of bird functional traits (behavioural traits: food habit, foraging pattern, foraging frequency, and habitat specialisation; morphological traits: weight, body length, wing length, and tail length) to both seed removal patterns and seed dispersal distances of an endangered and native tree species, Chinese yew (Taxus chinensis), in farmland, patchy habitat, and natural habitat, of southeast China.
Results We found that the ability of T. chinensis trees to form seed dispersal mutualisms with local birds varied across the different disturbed habitats. As a consequence of these mutualisms, more seeds were removed by birds from the patchy habitat than from the other two habitats. The number of seeds removed increased with bird foraging frequency. Moreover, the dispersal distance from the three habitats differed, and the longest dispersal distances were observed at both the patchy habitat and the farmland site. Seed dispersal distance increased with bird tail and wing length.
Conclusions Our Results highlight the importance of bird functional traits in the seed dispersal patterns of endangered trees across disturbed forest habitats, which should be considered for tree conservation and management.