Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Isabel Barwisch, Wolfgang Mewes, Angela Schmitz Ornés. 2022: Long-term monitoring data reveal effects of age, population density, and environmental aspects on hatching success of Common Cranes (Grus grus). Avian Research, 13(1): 100040. doi: 10.1016/j.avrs.2022.100040
Citation: Isabel Barwisch, Wolfgang Mewes, Angela Schmitz Ornés. 2022: Long-term monitoring data reveal effects of age, population density, and environmental aspects on hatching success of Common Cranes (Grus grus). Avian Research, 13(1): 100040. doi: 10.1016/j.avrs.2022.100040

Long-term monitoring data reveal effects of age, population density, and environmental aspects on hatching success of Common Cranes (Grus grus)

doi: 10.1016/j.avrs.2022.100040
More Information
  • Facing climate and land use change, a species' ability to successfully adapt to changing environments is crucial for its survival. Extensive drainage and intensification of agriculture and forestry set wetlands and associated species at risk of population declines. The population of Common Cranes (Grus grus) has experienced considerable fluctuations over the last century. Despite increasing population numbers, hatching success seemed to have decreased over the last years. The aim of this study was to identify factors influencing hatching success and nest survival of Common Cranes based on analyses of long-term individual-based monitoring data from northeastern Germany and evaluate the species ability to adapt to changing environments. Hatching success decreased over the course of the study period from 0.75 to 0.55. Surprisingly, nest survival and hatching success did not vary across different nesting habitats, whereas factors such as female age, timing of nest initiation and breeding pair density were found to have significant effects on hatching success. Older females showed higher hatching success, even though the proportion of unhatched eggs was highest in females aged 20 years or older. Early nest initiation had a positive effect on hatching success. Water levels are more favorable early in the nesting season, whereas increasing evaporation with time causes water levels to decrease, granting easier access for predators. Independently of female age, hatching success decreased with increasing numbers of breeding pairs within a 2-km radius around a nesting site. High population densities intensify competition for resources and promote intraspecific interactions, affecting reproductive outcome negatively. This study gives first insights into mechanisms behind population regulation in Common Cranes, highlighting the importance of population dynamics and individual features. We suggest to further investigate density dependent effects including landscape and habitat features as well as reproductive success in terms of chick survival, since successfully raising juveniles is crucial for a species survival.

     

  • loading
  • Assersohn, K., Brekke, P., Hemmings, N., 2021. Physiological factors influencing female fertility in birds. R. Soc. Open Sci. 8, 202274. doi: 10.1098/rsos.202274
    Ballantyne, K., Nol, E., 2011. Nesting habitat selection and hatching success of whimbrels near Churchill, Manitoba, Canada. Waterbirds 34, 151-159. doi: 10.1675/063.034.0203
    Barwisch, I., Mewes, W., Modrow, M., Schmitz Ornés, A., 2019. Parental care and threats to eggs of common cranes ‒ shared responsibilities and sleepless nights (Grus grus). In: Scientific Poster, 12th European Ornithologists Union Conference 2019, ClujNapoca.
    Bartoń, K., 2020. Package 'MuMIn'. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf.
    Bates, D.M., Maechler, M., Bolker, B.M., Walker, C., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1-48.
    Bates, D.M., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singman, H., et al., 2021. lme4: Linear Mixed-Effects Models Using 'Eigen' and S4. https://cran.r-project.org/web/packages/lme4/index.html.
    BirdLife International, 2016. Grus grus. The IUCN Red List of Threatened Species 2016. https://www.gbif.org/species/176618587. (Accessed 13 October 2021).
    Boldt, A., 2015. The Development of Crane Breeding Population in Germany up to 2014 and the Introduction of Monitoring Breeding Sites on Specific Sample Areas. Das Kranichjahr 2014/2015, AG Kranichschutz Deutschland, pp. 11-15.
    Bradter, U., Gombobaatar, S., Uuganbayar, C., Grazia, T.E., Exo, K.M., 2005. Reproductive performance and nest-site selection of White-naped Cranes Grus vipio in the Ulz river valley, north-eastern Mongolia. Bird. Conserv. Int. 15, 313-326. doi: 10.1017/s0959270905000663
    Bretagnolle, V., Mougeot, F., Thibault, J.C., 2008. Density dependence in a recovering osprey population: demographic and behavioural processes. J. Anim. Ecol. 77, 998-1007. doi: 10.1111/j.1365-2656.2008.01418.x
    Briffa, K.R., van der Schrier, G., Jones, P.D., 2009. Wet and dry summers in Europe since 1750: evidence of increasing drought. Int. J. Climatol. 29, 1894-1905. doi: 10.1002/joc.1836
    Britschgi, A., Spaar, R., Arlettaz, R., 2006. Impact of grassland farming intensification on the breeding ecology of an indicator insectivorous passerine, the Whinchat Saxicola rubetra: lessons for overall Alpine meadowland management. Biol. Conserv. 130, 193-205. doi: 10.1016/j.biocon.2005.12.013
    Burnham, K.P., Anderson, D.R., 2002. In: Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach, second ed. Springer, New York.
    Chamberlain, D.E., Fuller, R.J., Bunce, R.G.H., Duckworth, J.C., Shrubb, M., 2001. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771-788.
    Claassen, A.H., Arnold, T.W., Roche, E.A., Saunders, S.P., Cuthbert, F.J., 2014. Factors influencing nest survival and renesting by Piping Plovers in the Great Lakes region. Condor 116, 394-407. doi: 10.1650/CONDOR-13-146.1
    Clark, M.E., DiMatteo, J.J., 2018. Age, nest initiation, and demographic characteristics of American White Pelicans (Pelecanus erythrorhynchos) breeding at Marsh Lake, Minnesota. Wilson J. Ornithol. 130, 881-890. doi: 10.1676/1559-4491.130.4.881
    Devries, J.H., Brook, R.W., Howerter, D.W., Anderson, M.G., 2008. Effects of spring body condition and age on reproduction in Mallards (Anas platyrhynchos). Auk 125, 618-628. doi: 10.1525/auk.2008.07055
    Donal, P.F., Gree, R.E., Heath, M.F., 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proc. Roy. Soc. Lond. B. 268, 25-29. doi: 10.1098/rspb.2000.1325
    Drygala, F., Mix, H.M., Stier, N., Roth, M., 2000. Preliminary findings from ecological studies of the raccoon dog (Nyctereutes procyonoides) in eastern Germany. J. Ecol. Conserv. 9, 147-152.
    Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., et al., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. 81, 163-182. doi: 10.1017/S1464793105006950
    Ehrlich, P.R., 2004. Global changes and its influence on biodiversity. In: Casagrandi, R., Melia, P. (Eds. ), Ecology. Proceedings of the Xiii National Congress of the Italian Society of Ecolo (Como, 8-10 September 2003), Aracne, pp. 35-45.
    Fernandez, C., Azkona, P., Donazar, J.A., 1998. Density-dependent effects on productivity in the Griffon Vulture Gyps fulvus: the role of interference and habitat heterogeneity. Ibis 140, 64-69.
    Forschler, M.L., Kalko, E.K.V., 2006. Age-specific reproductive performance in citril finches Carduelis citrinella. Ardea 94, 275-279.
    Fox, J., Weisberg, S., Price, B., Adler, D.M., Bates, D., Baud-Bovy, G., et al., 2021. Car: companion to applied regression. https://cran.r-project.org/web/packages/car/index.html.
    Fraixedas, S., Lindén, A., Husby, M., Lehikoinen, A., 2020. Declining peatland bird numbers are not consistent with the increasing Common Crane population. J. Ornithol. 161, 691-700. doi: 10.1007/s10336-020-01777-6
    Gethöffer, F., Sodeikat, G., Pohlmeyer, K., 2007. Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. Eur. J. Wildl. Res. 53, 287-297. doi: 10.1007/s10344-007-0097-z
    Heldbjerg, H., Sunde, P., Fox, A.D., 2018. Continuous population declines for specialist farmland birds 1987-2014 in Denmark indicates no halt in biodiversity loss in agricultural habitats. Bird. Conserv. Int. 28, 278-292. doi: 10.1017/s0959270916000654
    Hendrickx, F., Maelfait, J.P., van Wingerden, W., Schweiger, O., Speelmans, M., Aviron, S., et al., 2007. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340-351. doi: 10.1111/j.1365-2664.2006.01270.x
    Hernández, N., Oro, D., Sanz-Aguilar, A., 2017. Environmental conditions, age, and senescence differentially influence survival and reproduction in the Storm Petrel. J. Ornithol. 158, 113-123. doi: 10.1007/s10336-016-1367-x
    Höltje, H., Mewes, W., Haase, M., Schmitz-Ornés, A., 2016. Genetic evidence of female specific eggshell colouration in the Common Crane (Grus grus). J. Ornithol. 157, 609-617. doi: 10.1007/s10336-015-1311-5
    Hu, S., Niu, Z., Chen, Y., Li, L., Zhang, H., 2017. Global wetlands: potential distribution, wetland loss, and status. Sci. Total Environ. 586, 319-327. doi: 10.1016/j.scitotenv.2017.02.001
    Johnsgard, P., 1983. Cranes of the World: Eurasian Crane (Grus grus). University of Nebraska-Lincoln, Lincoln.
    Kennamer, R.A., Hepp, G.R., Alexander, B.W., 2016. Effects of current reproductive success and individual heterogeneity on survival and future reproductive success of female Wood Ducks. Auk 133, 439-450. doi: 10.1642/AUK-15-183.1
    Kentie, R., Hooijmeijer, J.C.E.W., Trimbos, K.B., Groen, N.M., Piersma, T., 2013. Intensified agricultural use of grasslands reduces growth and survival of precocial shorebird chicks. J. Appl. Ecol. 50, 243-251. doi: 10.1111/1365-2664.12028
    Laake, J., 2013. RMark: R Code for Mark Analysis. https://cran.r-project.org/web/packages/RMark/index.html.
    Larsson, K., Forslund, P., 1994. Population dynamics of the barnacle goose Branta leucopsis in the Baltic area: density-dependent effects on reproduction. J. Anim. Ecol. 63, 954-962. doi: 10.2307/5272
    Laurance, W.F., 2001. Future shock: forecasting a grim fate for the Earth. Trends Ecol. Evol. 16, 531-533. doi: 10.1016/S0169-5347(01)02268-6
    Léandri-Breton, D.J., Bêty, J., 2020. Vulnerability to predation may affect species distribution: plovers with broader arctic breeding range nest in safer habitat. Sci. Rep. 10, 5032. doi: 10.1038/s41598-020-61956-6
    Lehrmann, A., Mewes, W., Nowald, G., 2016. Die Bestandsentwicklung, Verbreitung und Siedlungsdichte des Kranichs Grus grus in Mecklenburg-Vorpommern von 1967 bis 2015. Ornithol. Inst. 54, 296-297.
    Lehrmann, A., 2020. Development of the Crane Population in Germany in 2019. Das Kranichjahr 2019/2020, AG Kranichschutz Deutschland, pp. 12-15.
    Leito, A., Truu, J., Leivits, A., Ojaste, I., 2003. Changes in distribution and numbers of the breeding population of the Common Crane Grus grus in Estonia. Ornis Fenn. 80, 159-171.
    Lemaître, J.F., Gaillard, J.M., 2017. Reproductive senescence: new perspectives in the wild. Biol. Rev. 92, 2182-2199. doi: 10.1111/brv.12328
    Månsson, J., Nilsson, L., Hake, M., 2013. Territory size and habitat selection of breeding Common Cranes (Grus grus) in a boreal landscape. Ornis Fenn. 90, 65-72.
    Maxon, S.J., 1974. Activity, Home Range, and Habitat Usage of Female Ruffed Grouse during the Egg-Laying, Incubation and Early Brood Periods as Determined by Radiotelemetry. University of Minnesota, Minneapolis. Master's Thesis.
    McCann, K.I., Benn, G.A., 2009. Land use patterns within Wattled Crane (Bugeranus carunculatus) home ranges in an agricultural landscape in KwaZulu-Natal, South Africa. Ostrich 77, 186-194.
    Meine, C.D., Archibald, G.W., 1996. The Cranes: Status Survey and Conservation Action Plan. IUCN, Gland and Cambridge.
    Mewes, W., 2010. Population development, range distribution and population density of Common Cranes Grus grus in Germany and its federal states. Vogelwelt 131, 75-92.
    Mewes, W., Rauch, M., 2010. Identification of breeding female Common Cranes Grus grus through their clutches. Vogelwelt 131, 93-102.
    Mewes, W., Rauch, M., 2012. Hatching success of crane Grus grus clutches in an area in Mecklenburg-Western Pomerania between 2003 and 2012. Vogelwelt 133, 195-212.
    Mewes, W., 2014a. The future development of crane stocks in Mecklenburg-Vorpommern. Ornithologischer Rundbrief Mecklenburg-Vorpommern 48, 55-62.
    Mewes, W., 2014b. Die Bestandsentwicklung, Verbreitung und Siedlungsdichte des Kranichs Grus grus in Mecklenburg-Vorpommern von 1967 bis 2013. Ornithologischer Rundbrief Mecklenburg-Vorpommern 48, 29-34.
    Mewes, W., 2017. Die Brutorttreue von Kranichen Grus grus in Nordostdeutschland. Die Vogelwelt 137, 249-260.
    Mewes, W., 2019a. Wann beginnen die Kraniche Grus grus in Mecklenburg-Vorpommern mit ihrer Brut? Vogelwelt 139, 203-216.
    Mewes, W., 2019b. Breeding failure of Cranes due to drought in the study area Goldberg, Mecklenburg-Western Pomerania in 2019. Journal der Arbeitsgemeinschaft Kranichschutz Deutschland-Das Kranichjahr 2018/2019 74-77.
    Mewes, W., 2020. The volume development of clutches of Common Cranes Grus grus in the course of their lives-a contribution to the detection of ageing phenomena in female cranes. Vogelwarte 58, 363-372.
    Michler, F.U.F., 2016. Population Biology of the North American Raccoon (Procyon lotor Linnaeus, 1758) in a Northern German Lowland Beech Forest (Müritz National Park). TU Dresden, Dresden. Doctoral Thesis.
    Miller, T.P., Barzen, J.A., 2016. Habitat selection by breeding Sandhill cranes in Central Wisconsin. Proc. N. Am. Crane Workshop 13, 1-12.
    Møller, A.P., Nielsen, J.T., 2014. Parental defense of offspring and life history of a longlived raptor. Behav. Ecol. 25, 1505-1512. doi: 10.1093/beheco/aru130
    Moreno-Opo, R., 2020. Individual and demographic responses of a marsh bird assemblage to habitat loss and subsequent restoration. Avian Res. 11, 4. doi: 10.1186/s40657-020-00190-0
    Mozny, M., Trnka, M., Vlach, V., Vizina, A., Potopova, V., Zahradnicek, P., et al., 2020. Past (1971-2018) and future (2021-2100) pan evaporation rates in the Czech Republic. J. Hydrol. 590, 125390. doi: 10.1016/j.jhydrol.2020.125390
    Nisbet, I.C.T., Apanius, V., Friar, M.S., 2002. Breeding performance of very old Common Terns. J. Field Ornithol. 73, 117-124. doi: 10.1648/0273-8570-73.2.117
    Nisbet, I.C.T., Iles, D., Kaneb, A., Mostello, C.S., Jenouvrier, S., 2020. Breeding performance of Common Terns (Sterna hirundo) does not decline among older age classes. Auk 137, 1-17.
    Nowald, G., 2003. Bedingungen für den Fortpflanzungserfolg: Zur Öko-Ethologie des Greukranichs Grus grus während der Jungenaufzucht. Osnabrück University, Osnabrück. Doctoral Thesis.
    Nowald, G., Donner, N., Modrow, M., 2010. The development of Common Crane Grus grus resting and the influence of agriculture in the Rügen-Bock region in northeast Germany. Vogelwelt 131, 123-127.
    Noreikienė, K., Jaatinen, K., Steele, B.B., Öst, M., 2021. Glucocorticoids, state-dependent reproductive investment and success in the face of danger in a long-lived bird. J. Ornithol. 162, 497-509. doi: 10.1007/s10336-020-01847-9
    Nuijten, R.J.M., Vriend, S.J.G., Wood, K.A., Haitjema, T., Rees, E.C., Jongejans, E., et al., 2020. Apparent breeding success drives long-term population dynamics of a migratory swan. J. Avian Biol. 51, e02574. doi: 10.1111/jav.02574
    Nummi, P., Saari, L., 2003. Density-dependent decline of breeding success in an introduced, increasing mute swan Cygnus olor population. J. Avian Biol. 34, 105-111. doi: 10.1034/j.1600-048X.2003.02801.x
    Nussey, D.H., Froy, H., Lemaître, J.F., Gaillard, J.M., Austad, S.N., 2013. Senescence in natural populations of animals: widespread evidence and its implications for biogerontology. Ageing Res. Rev. 12, 214-225. doi: 10.1016/j.arr.2012.07.004
    Pakanen, V.M., Hagstedt, R., Pauliny, A., Blomqvist, D., 2020. Survival during prefledging period rather than during post-fledging drives variation in local recruitment of an endangered migratory shorebird, the Southern Dunlin Calidris alpine schinzii. J. Ornithol. 162, 119-124.
    Park, K.J., Robertson, P.A., Campbell, S.T., Foster, R., Russell, Z.M., Newborn, D., et al., 2001. The role of invertebrates in the diet, growth and survival of red grouse (Lagopus lagopus scoticus) chicks. J. Zool. 254, 137-145. doi: 10.1017/S0952836901000644
    Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637-669. doi: 10.1146/annurev.ecolsys.37.091305.110100
    Piper, W.H., Brunk, K.M., Flory, J.A., Meyer, M.W., 2017. The long shadow of senescence: age impacts survival and territory defense in loons. J. Avian Biol. 48, 1062-1070. doi: 10.1111/jav.01393
    Prange, H., Mewes, W., Winter, S., 2016. Fortpflanzung und Jungenaufzucht. In: Prange, H. (Ed. ), Die Welt der Kraniche. Leben-Umfeld-Schutz. Verbreitung aller Arten. MediaNatur Verlag Hans-Josef Christ, Minden.
    Rotella, J., 2018. Nest survival models. In: Cooch, E.G., White, G.C. (Eds. ), Program MARK-A Gentle Introduction, eighteenth ed. Cornell University, New York, pp. 744-762.
    Sakseide, I.M.M., 2020. Effect of Farmland Type and Vegetation Height on Habitat Use and Breeding Success of Northern Lapwings in South-East Norway. Norwegian University of Life Science, Ås. Master's Thesis.
    Schmitz Ornés, A., Herbst, A., Spillner, A., Mewes, W., Rauch, M., 2014. A standardized method for quantifying eggshell spot patterns. J. Field Ornithol. 85, 397-407. https://doi.org/10.1111/jofo.12079.
    Sica, Y.V., Quintana, R.D., Bernardos, J.N., Calamari, N.C., Gavier-Pizarro, G.I., 2020. Wetland bird response to habitat composition and configuration at multiple spatial scales. Wetlands 40, 2513-2525. doi: 10.1007/s13157-019-01215-1
    Solovyeva, D.V., Koyama, K., Vartanyan, S., 2019. Living child-free: proposal for densitydependent regulation in Bewick's Swans Cygnus columbianus bewickii. Wildfowl 5, 197-210.
    Sundar, K.S.G., 2009. Are rice paddies suboptimal breeding habitats for Sarus cranes in Uttar Pradesh, India? Condor 111, 611-623. doi: 10.1525/cond.2009.080032
    Teuling, A.J., de Badts, E.A.G., Jansen, F.A., Fuchs, R., Buitink, J., van Dijke, A.J.H., et al., 2019. Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. 23, 3631-3652. doi: 10.5194/hess-23-3631-2019
    Thomas, C.D., 2010. Climate, climate change and range boundaries. Divers. Distrib. 16, 488-495. doi: 10.1111/j.1472-4642.2010.00642.x
    Toland, B., 1999. Nesting success and productivity of Florida sandhill cranes on natural and developed sites in Southeast Florida. Fla. Field Nat. 27, 10-13.
    Trautmann, S., 2018. Climate change impacts on bird species. In: Tietze, D.T. (Ed. ), Bird Species, Fascinating Life Sciences. Springer Nature Switzerland AG, Basel, pp. 217-234.
    Vale, M.M., Cohn-Haft, M., Bergen, S., Pimm, S.L., 2008. Effects of future infrastructure development on threat status and occurrence of Amazonian birds. Conserv. Biol. 22, 1006-1015. doi: 10.1111/j.1523-1739.2008.00939.x
    Van Heezik, Y., Saint Kalme, M., Hémon, S., Seddon, P., 2002. Temperature and egglaying experience influences breeding performance of captive female houbara bustards. J. Avian Biol. 33, 63-70. doi: 10.1034/j.1600-048X.2002.330110.x
    Vergara, P., Aguirre, J.I., Fernández-Cruz, M., 2007. Arrival date, age and breeding success in white stork Ciconia ciconia. J. Avian Biol. 38, 573-579. doi: 10.1111/j.0908-8857.2007.03983.x
    Verhulst, S., Nilsson, J. Å., 2008. The timing of birds' breeding seasons: a review of experiments that manipulated timing of breeding. Phil. Trans. R. Soc. B. 363, 399-410. doi: 10.1098/rstb.2007.2146
    von Blotzheim, G., Bauer, K.M., Bezzel, E., 1994. In: Grus grus. Handbuch der Vögel Mitteleuropas Band 5-Galliformes und Gruiformes, second ed. AULA-Verlag, Wiesbaden.
    Wlodarczyk, R., Minias, P., 2020. Age-related differences in reproductive success support the selection hypothesis in a Mute Swan population. J. Ornithol. 161, 1185-1193. doi: 10.1007/s10336-020-01803-7
    Zhu, X., Srivastava, D.S., Smith, J.N., Martin, K., 2012. Habitat selection and reproductive success of Lewis's Woodpecker (Melanerpes lewis) at its northern limit. PLoS One 7, e44346. doi: 10.1371/journal.pone.0044346
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (30) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return