Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Bin Wang, Yun Li, Guiquan Zhang, Jian Yang, Cao Deng, Haoyu Hu, Long Zhang, Xiaoqin Xu, Caiquan Zhou. 2022: Seasonal variations in the plant diet of the Chinese Monal revealed by fecal DNA metabarcoding analysis. Avian Research, 13(1): 100034. doi: 10.1016/j.avrs.2022.100034
Citation: Bin Wang, Yun Li, Guiquan Zhang, Jian Yang, Cao Deng, Haoyu Hu, Long Zhang, Xiaoqin Xu, Caiquan Zhou. 2022: Seasonal variations in the plant diet of the Chinese Monal revealed by fecal DNA metabarcoding analysis. Avian Research, 13(1): 100034. doi: 10.1016/j.avrs.2022.100034

Seasonal variations in the plant diet of the Chinese Monal revealed by fecal DNA metabarcoding analysis

doi: 10.1016/j.avrs.2022.100034
More Information
  • The Chinese Monal (Lophophorus lhuysii) is an alpine-obligate galliform species of global conservation priority. It has been listed as a first class protected wildlife species in China, requiring conservation actions during the 14th Five-Year Plan period. However, the diet composition of Chinese Monal and its seasonal variations have rarely been studied, constraining the effective conservation of the species. Here, we investigated the plant diet composition of the Chinese Monal and its seasonal variations using a DNA metabarcoding approach on fecal samples. We collected 190 fecal samples of the Chinese Monals from the central Qionglai Mountains located in China, and analyzed the plant diet of this species using a DNA metabarcoding approach. Taxonomic profiling of higher plants in the fecal samples was performed using the second internal transcribed spacer (ITS2) amplicon. Downstream analyses, including rarefaction curves, nonmetric multidimensional scaling (NMDS) and permutational multivariate analysis of variance (PERMANOVA), were used to explore the seasonal variations in diet composition. The Chinese Monal foraged a wide range of plant recipes composed of 35 families and 83 genera throughout the year, with Brassicaceae, Apiaceae, and Poaceae as the dominant families, and Cardamine as the dominant genus. The species consumed plants from 62 genera from 28 families during the breeding season (n ​= ​81) and 66 genera from 31 families during the non-breeding season (n ​= ​109). Further, the plant diet composition significantly varied between the breeding and non-breeding seasons, especially for the frequency of occurrence and relative read abundances at genus level. Our study analyzed the plant diet of the Chinese Monal at a high resolution for the first time, and the results revealed that the seasonal variations in its plant diet composition was adapted to plant phenology and foraging strategy. Fritillaria species, a previously confirmed important food resource for the Chinese Monal, were not detected in any fecal samples, potentially due to overharvesting of Fritillaria bulbs for Traditional Chinese Medicine. Therefore, we highly recommend further restriction of herb gathering in Chinese Monal habitats to facilitate the conservation of this endangered species. Altogether, our study enriches essential ecological information for the Chinese Monal and also provides insights into conservation management for this endangered species.

     

  • 1 These authors contributed equally to this work.
  • loading
  • Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32-46.
    Ando, H., Fujii, C., Kawanabe, M., Ao, Y., Inoue, T., Takenaka, A., 2018. Evaluation of plant contamination in metabarcoding diet analysis of a herbivore. Sci. Rep. 8, 15563. doi: 10.1038/s41598-018-32845-w
    Birdlife International, 2016. Lophophorus lhuysii. The IUCN Red List of Threatened Species 2016: e. T22679192A92806697. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22679192A92806697.en. (Accessed 04 September 2020).
    Callahan, B.J., Mcmurdie, P.J., Holmes, S.P., 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639-2643. doi: 10.1038/ismej.2017.119
    Chen, D., Li, C., Feng, L., Zhang, Z., Zhang, H., Cheng, G., et al., 2018. Analysis of the influence of living environment and age on vaginal fungal microbiome in giant pandas (Ailuropoda melanoleuca) by high throughput sequencing. Microb. Pathogen. 115, 280-286. doi: 10.1016/j.micpath.2017.12.067
    Chen, Y.H., 2013. Conservation priority for endemic birds of mainland China based on a phylogenetic framework. Chinese Birds 4, 248-253. doi: 10.5122/cbirds.2013.0021
    Chua, P.Y.S., Lammers, Y., Menoni, E., Ekrem, T., Bohmann, K., Boessenkool, S., et al., 2021. Molecular dietary analyses of western capercaillies (Tetrao urogallus) reveal a diverse diet. Environ. DNA 3, 1156-1171. doi: 10.1002/edn3.237
    Chung, C.T., Wong, H.S., Kwok, M.L., Meng, Q., Chan, K.M., 2021. Dietary analysis of the House Swift (Apus nipalensis) in Hong Kong using prey DNA in faecal samples. Avian Res. 12, 5. doi: 10.35496/han.45.1
    CITES, 2016. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendices I, II and III. http://www.cites.org. (Accessed 04 September 2020).
    Deagle, B.E., Thomas, A.C., McInnes, J.C., Clarke, L.J., Vesterinen, E.J., Clare, E.L., et al., 2019. Counting with DNA in metabarcoding studies: how should we convert sequence reads to dietary data? Mol. Ecol. 28, 391-406. doi: 10.1111/mec.14734
    Fahner, N.A., Shokralla, S., Baird, D.J., Hajibabaei, M., 2016. Large-scale monitoring of plants through environmental DNA metabarcoding of soil: recovery, resolution, and annotation of four DNA markers. PLoS ONE 11, e0157505. doi: 10.1371/journal.pone.0157505
    Forin-Wiart, M-A., Poulle, M-L., Piry, S., Cosson, J-F., Larose, C., Galan, M., 2018. Evaluating metabarcoding to analyse diet composition of species foraging in anthropogenic landscapes using Ion Torrent and Illumina sequencing. Sci. Rep. 8, 17091. doi: 10.1038/s41598-018-34430-7
    Gainsbury, A., Meiri, S., 2017. The latitudinal diversity gradient and interspecific competition: no global relationship between lizard dietary niche breadth and species richness. Global Ecol. Biogeogr. 26, 563-572. doi: 10.1111/geb.12560
    Gao, Z.T., Wang, X.Y., Liu, Y., Wei, X.M., Han, J.P., Chen, S.L., 2018. Identification of Chinese patent medicines containing Fritillariae cirrhosae bulbus using ITS2 region. Sci. Sin. Vitae 48, 482-489. (in Chinese). doi: 10.1360/N052017-00201
    Gotelli, N.J., Colwell, R.K., 2011. Estimating species richness. In: Magurran, A.E., McGill, B.J. (Eds.), Frontiers in Measuring Biodiversity. Oxford University Press, New York, pp. 39-54.
    Gul, M.R., Griffen, B.D., 2020. Diet, energy storage, and reproductive condition in a bioindicator species across beaches with different levels of human disturbance. Ecol. Indic. 117, 106636. doi: 10.1016/j.ecolind.2020.106636
    Guo, L., Liu, F.Q., Shi, L., Wen, L.Y., 2020. Physiological and ecological adaptability of Blood Pheasant (Ithaginis cruentus) and its favorite Bryophyte. Chin. J. Appl. Environ. Biol. 26, 1400-1405. (in Chinese).
    Hacker, C.E., Hoenig, B.D., Wu, L., Cong, W., Yu, J., Dai, Y., et al., 2021. Use of DNA metabarcoding of bird pellets in understanding raptor diet on the Qinghai-Tibetan Plateau of China. Avian Res. 12, 42. doi: 10.1186/s40657-021-00276-3
    He, F.Q., Lu, T.C., 1985. Ecology of the Chinese Monal in winter. Zool. Res. 6, 345-352. (in Chinese).
    He, F.Q., Lu, T.C., Lu, C.L., Cui, X.Z., 1986. Study on the breeding ecology of the Chinese Monal. Acta Ecol. Sin. 6, 186-192. (in Chinese).
    Hsieh, T.C., Ma, K.H., Chao, A., 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Method. Ecol. Evol. 7, 1451-1456. doi: 10.1111/2041-210X.12613
    IUCN, 2020. The IUCN red list of threatened species. Version 2020-2. https://www.iucnredlist.org. (Accessed 04 September 2020).
    Jayawardena, R.S., Purahong, W., Zhang, W., Wubet, T., Li, X., Liu, M., et al., 2018. Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers. 90, 1-84. doi: 10.1007/s13225-018-0398-4
    Jia, H.Y., Liu, X.Q., Tian, N.F., Zhang, R., Wang, R.R., Liu, L.X., et al., 2021. Spring and summer diet composition of Tibetan Snowcocks. Chinese J. Ecol. 40, 470-479. (in Chinese). doi: 10.1007/978-3-030-74811-1_69
    Kartzinel, T.R., Chen, P.A., Coverdale, T.C., Erickson, D.L., Kress, W.J., Kuzmina, M.L., et al., 2015. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Nat. Acad. Sci. 112, 8019-8024. doi: 10.1073/pnas.1503283112
    Kluen, E., Nousiainen, R., Lehikoinen, A., 2017. Breeding phenological response to spring weather conditions in common Finnish birds: resident species respond stronger than migratory species. J. Avian Biol. 48, 611-619. doi: 10.1111/jav.01110
    Long, T.L., Shao, K., Guo, G., Cheng, C.Y., Zou, X.Y., Landel, H., et al., 1998. Field tracking and ecological observation of the Chinese Monal in winter. Sichuan J. Zool. 17, 104-105. (in Chinese).
    Lu, T.C., Liu, R.S., He, F.Q., Lu, C.L., 1986. Ecological studies on Chinese Monal. Acta Zool. Sin. 32, 273-279. (in Chinese).
    Luo, K., Ma, P., Yao, H., Song, J., Chen, K., Liu, Y., 2012a. Molecular identification of Fritillariae cirrhosae Bulbus and its adulterants. World Sci. Technol. Modern. Tradit. Chin. Med. Materia Medica 14, 1153-1158. (in Chinese).
    Luo, X., Wu, T.P., Huang, A.Q., 2016. Diet analysis and foraging strategy of two sympatric pheasants at Mt. Gaoligong in winter. Chin. J. Ecol. 35, 1003-1008. (in Chinese).
    Luo, X., Xu, M.Y., Wu, L.X., 2012b. Spring diets and food nutrients of Sclater's Monal at Mt. Gaoligong, China. Sichuan J. Zool. 31, 17-22. (in Chinese).
    Ma, G.Y., 1988. Observation on the Chinese Monal in Gansu Province. Sichuan J. Zool. 7, 41-42. (in Chinese).
    Martin, K., Hik, D., 1992. Willow Ptarmigan chicks consume moss sporophyte capsules. J. Field Ornithol. 63, 355-358. doi: 10.1007/978-3-322-87884-7_6
    McClenaghan, B., Nol, E., Kerr, K.C.R., 2019. DNA metabarcoding reveals the broad and flexible diet of a declining aerial insectivore. Auk 136, 1-11.
    McInnes, J.C., Alderman, R., Deagle, B.E., Lea, M-A., Raymond, B., Jarman, S.N., 2017. Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Method. Ecol. Evol. 8, 192-202. doi: 10.1111/2041-210X.12677
    Moorhouse-Gann, R.J., Dunn, J.C., De Vere, N., Goder, M., Cole, N., Hipperson, H., et al., 2018. New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Sci. Rep. 8, 8542. doi: 10.1038/s41598-018-26648-2
    National Forestry and Grassland Administration, National Development and Reform Commission, 2021. The outline of the national 14th Five-Year Plan on development of forestry and grassland conservation. http://www.gov.cn/xinwen/2021-08/19/content_5632036.htm. (in Chinese).
    Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., et al., 2020. vegan: community ecology package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.
    Pompanon, F., Deagle, B.E., Symondson, W.O.C., Brown, D.S., Jarman, S.N., Taberlet, P., 2012. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931-1950. doi: 10.1111/j.1365-294X.2011.05403.x
    Prins, H.H.T., 1982. Why are mosses eaten in cold environments only? Oikos 38, 374-380. doi: 10.2307/3544680
    R Core Team, 2021. R: a language and environment for statistical computing. https://www.R-project.org/.
    Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahe, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584. doi: 10.7717/peerj.2584
    Shao, X.N., Lu, Q., Xiong, M.Y., Bu, H.L., Shi, X.Y., Wang, D.J., et al., 2021. Prey partitioning and livestock consumption in the world's richest large carnivore assemblage. Curr. Biol. 31, 4887-4897. doi: 10.1016/j.cub.2021.08.067
    Shutt, J.D., Trivedi, U.H., Nicholls, J.A., 2021. Faecal metabarcoding reveals pervasive long-distance impacts of garden bird feeding. Proc. R. Soc. B. Biol. 288, 20210480. doi: 10.1098/rspb.2021.0480
    Teng, L.W., Li, Y.X., Liu, Z.S., Dong, J.P., Yao, Z.C., Zhang, J.T., 2013. Summer diet composition of feral yak in Helan Mountains. J. Econ. Anim. 17, 192-196. (in Chinese).
    Teng, L.W., Wang, Y., Li, L.Y., Yao, Z.C., Lu, P.F., Li, Y.X., et al., 2014. Autumn diet composition of feral yak (Bos grunnieus) in Helan Mountains. J. Anhui Agr. Sci. 42, 6258-6260. (in Chinese).
    Wang, B., Xu, Y., Ran, J.H., 2017. Predicting suitable habitat of the Chinese Monal (Lophophorus lhuysii) using ecological niche modeling in the Qionglai Mountains, China. PeerJ 5, e3477. doi: 10.7717/peerj.3477
    Ward, E.J., Levin, P.S., Lance, M.M., Jeffries, S.J., Acevedogutierrez, A., 2012. Integrating diet and movement data to identify hot spots of predation risk and areas of conservation concern for endangered species. Conserv. Lett. 5, 37-47. doi: 10.1111/j.1755-263X.2011.00210.x
    Wickham, H., 2009. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York.
    Xu, L.X., Wu, W., Ma, S.G., Ma, J., Cheng, K., 2015. Winter food habits of Hazal Grouse (Bonasa bonasia) in Liangshui National Nature Reserve. Chinese J. Wildl. 36, 402-406. (in Chinese).
    Xu, Y., Wang, B., Zhong, X., Yang, B., Zhang, J.D., Zhao, C., et al., 2020. Predicting range shifts of the Chinese Monal (Lophophorus lhuysii) under climate change: Implications for long-term conservation. Global Ecol. Conserv. 22, e01018. doi: 10.1016/j.gecco.2020.e01018
    Yao, Z.C., Liu, Z.S., Wang, Z.D., Hu, T.H., Li, Z.G., 2011. Winter and spring diet composition of feral yak in Helan Mountains, China. Acta Ecol. Sin. 31, 673-679. (in Chinese).
    Yu, X., Chen, J.C., Wang, B., Yan, Y., Ran, J.H., He, F., et al., 2017. Population density estimation and habitat suitability assessment of Lophophorus lhuysii during breeding season in Xiaozhaizigou National Nature Reserve, Sichuan Province. Sichuan J. Zool. 36, 361-367. (in Chinese).
    Zhang, B.W., Li, M., Ma, L.C., Wei, F.W., 2006. A widely applicable protocol for DNA isolation from fecal samples. Biochem. Genet. 44, 503-512.
    Zhang, T., 1995. Distribution and ecology of Chinese Monals in Baishuijiang Nature Reserve, Gansu. Chinese J. Zool. 30, 25-28. (in Chinese).
    Zhang, Z.W., Ding, C., Ding, P., Zheng, G., 2003. The current status and a conservation strategy for species of Galliformes in China. Biodivers. Sci. 11, 414-421. doi: 10.17520/biods.2003049
    Zheng, G.M., 2015. Pheasants in China. Higher Education Press, Beijing.
    Zheng, H., Deng, K.Y., Chen, A.Q., Fu, S.B., Zhou, D., Wang, W.W., et al., 2019. Molecular identification and genetic relationship of Fritillaria cirrhosa and related species based on DNA barcode. Acta Pharm. Sin. 54, 2326-2334. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (42) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return