Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Xiaoke Niu, Zhenyang Jiang, Yanyan Peng, Shuman Huang, Zhizhong Wang, Li Shi. 2022: Visual cognition of birds and its underlying neural mechanism: A review. Avian Research, 13(1): 100023. doi: 10.1016/j.avrs.2022.100023
Citation: Xiaoke Niu, Zhenyang Jiang, Yanyan Peng, Shuman Huang, Zhizhong Wang, Li Shi. 2022: Visual cognition of birds and its underlying neural mechanism: A review. Avian Research, 13(1): 100023. doi: 10.1016/j.avrs.2022.100023

Visual cognition of birds and its underlying neural mechanism: A review

doi: 10.1016/j.avrs.2022.100023
More Information
  • Corresponding author: E-mail address: wzz1982@zzu.edu.cn (Z. Wang)
  • Available Online: 07 Jul 2022
  • Publish Date: 24 Mar 2022
  • Birds have acute vision and many remarkable visual cognition abilities, due to their unique living environment. The underlying neural mechanisms have also attracted interests of researchers in neuroscience. Here, we firstly summarize the visual cognition abilities of birds, and make a comparison with mammals. Secondly, the underlying neural mechanisms are presented, including histological structure of avian brain and visual pathways, typical experimental results and conclusions in electrochemistry and electrophysiology. The latter mainly focuses on several higher brain areas related to visual cognition, including mesopallium ventrolaterale, entopallium, visual Wulst, and nidopallium caudolaterale. Finally, we make a conclusion and provide a suggestion about future studies on revealing the neural mechanisms of avian visual cognition. This review presents a detailed understanding of avian visual cognition and would be helpful in ornithology studies in the field of cognitive neuroscience.


  • loading
  • Anderson, C., Johnston, M., Marrs, E.J., Porter, B., Colombo, M., 2020a. Delay activity in the Wulst of pigeons (Columba livia) represents correlates of both sample and reward information. Neurobiol. Learn. Mem. 171, 107214. doi: 10.1016/j.nlm.2020.107214
    Anderson, C., Parra, R.S., Chapman, H., Steinemer, A., Porter, B., Colombo, M., 2020b. Pigeon nidopallium caudolaterale, entopallium, and mesopallium ventrolaterale neural responses during categorisation of Monet and Picasso paintings. Sci. Rep. 10, 15971. doi: 10.1038/s41598-020-72650-y
    Atoji, Y., Wild, J.M., 2012. Afferent and efferent projections of the mesopallium in the pigeon (Columba livia). J. Comp. Neurol. 520, 717-741. doi: 10.1002/cne.22763
    Azizi, A.H., Pusch, R., Koenen, C., Klatt, S., Broker, F., Thiele, S., et al., 2019. Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia). Behav. Brain Res. 356, 423-434. doi: 10.1016/j.bbr.2018.05.014
    Bayer, H.M., Glimcher, P.W., 2005. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129-141. doi: 10.1016/j.neuron.2005.05.020
    Behroozi, M., Helluy, X., Strockens, F., Gao, M., Pusch, R., Tabrik, S., et al., 2020. Event-related functional MRI of awake behaving pigeons at 7T. Nat. Commun. 18, 4715.
    Behroozi, M., Strockens, F., Stacho, M., Gunturkun, O., 2017. Functional connectivity pattern of the internal hippocampal network in awake pigeons: a resting-state fMRI study. Brain Behav. Evol. 90, 62-72. doi: 10.1159/000475591
    Berg, M.E., Grace, R.C. 2011. Categorization of multidimensional stimuli by pigeons. J. Exp. Anal. Behav. 95, 305-326. doi: 10.1901/jeab.2010.94-305
    Burton, R.F., 2008. The scaling of eye size in adult birds: relationship to brain, head and body sizes. Vision Res. 48, 2345-2351. doi: 10.1016/j.visres.2008.08.001
    Campos, H.C., Debert, P., da Silva Barros, R., McIlvane, W.J., 2011. Relational discrimination by pigeons in a go/no-go procedure with compound stimuli: a methodological note. J. Exp. Anal. Behav. 96, 417-426. doi: 10.1901/jeab.2011.96-413
    Castro, L., Wasserman, E.A., 2013. Information-seeking behavior: exploring metacognitive control in pigeons. Anim. Cogn. 16, 241-254. doi: 10.1007/s10071-012-0569-8
    Cheng, S., Li, M., Yu, H., Zhao, K., Liu, S., Wan, H., 2020. Decoding pigeon behavior outcomes during goal-directed decision task by WSR functional network analysis. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 38-41.
    Chen, J., Zou, Y., Sun, Y.H., Ten Cate, C., 2019. Problem-solving males become more attractive to female budgerigars. Science 363, 166-167. doi: 10.1126/science.aau8181
    Clark, W.J., Colombo, M., 2020. The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain. Prog. Neurobiol. 195, 101781. doi: 10.1016/j.pneurobio.2020.101781
    Clark, W.J., Porter, B., Colombo, M., 2019. Searching for face-category representation in the avian visual forebrain. Front. Physiol. 10, 140. doi: 10.3389/fphys.2019.00140
    Clayton, N.S., Emery, N.J., 2015. Avian models for human cognitive aeuroscience: a proposal. Neuron 86, 1330-1342. doi: 10.1016/j.neuron.2015.04.024
    Coello, Y., Danckert, J., Blangero, A., Rossetti, Y., 2007. Do visual illusions probe the visual brain? Illusions in action without a dorsal visual stream. Neuropsychologia 45, 1849-1858. doi: 10.1016/j.neuropsychologia.2006.12.010
    Cole, E., Chad, M., Moman, V., Mumby, D.G., 2020. A Go/No-go delayed nonmatching-to-sample procedure to measure object-recognition memory in rats. Behav. Process. 178, 104180. doi: 10.1016/j.beproc.2020.104180
    Colombo, M., 2017. Prospective processing: behavioural and neural evidence. Jpn. J. Anim. Psychol. 67, 47-61. doi: 10.2502/janip.67.2.2
    Cook, R.G., 2000. The comparative psychology of avian visual cognition. Curr. Direct. Psychol. Sci. 9, 83-89. doi: 10.1111/1467-8721.00066
    Cook, R.G., Qadri, M.A.J., Keller, A.M., 2015. The analysis of visual cognition in birds: implications for evolution, mechanism, and representation. Psychol. Learn. Motivat. 63, 173-210.
    Cook, R.G., Wright, A.A., Drachman, E.E., 2013. Categorization of birds, mammals, and chimeras by pigeons. Behav. Process. 93, 98-110. doi: 10.1016/j.beproc.2012.11.006
    Daniel, T.A., Cook, R.G., Katz, J.S., 2015. Temporal dynamics of task switching and abstract-concept learning in pigeons. Front. Psychol. 6, 1334.
    Daniel, T.A., Wright, A.A., Katz, J.S., 2015. Abstract-concept learning of difference in pigeons. Anim. Cogn. 18, 831-837. doi: 10.1007/s10071-015-0849-1
    de Brouwer, A.J., Smeets, J.B., Gutteling, T.P., Toni, I., Medendorp, W.P., 2015. The Muller-Lyer illusion affects visuomotor updating in the dorsal visual stream. Neuropsychologia 77, 119-127. doi: 10.1016/j.neuropsychologia.2015.08.012
    de Groof, G., Jonckers, E., Gunturkun, O., Denolf, P., Van Auderkerke, J., Van der Linden, A., 2013. Functional MRI and functional connectivity of the visual system of awake pigeons. Behav. Brain Res. 239, 43-50. doi: 10.1016/j.bbr.2012.10.044
    de la Malla, C., Brenner, E., de Haan, E.H.F., Smeets, J.B.J., 2019. A visual illusion that influences perception and action through the dorsal pathway. Commun. Biol. 2, 38. doi: 10.1038/s42003-019-0293-x
    Ditz, H.M., Nieder, A., 2015. Neurons selective to the number of visual items in the corvid songbird endbrain. P. Natl. Acad. Sci. U. S. A. 112, 7827-7832. doi: 10.1073/pnas.1504245112
    Ditz, H.M., Nieder, A., 2016. Numerosity representations in crows obey the Weber-Fechner law. Proc. Biol. Sci. 283, 20160083. doi: 10.1098/rspb.2016.0083
    Dugas-Ford, J., Ragsdale, C. W., 2015. Levels of homology and the problem of neocortex. Annu. Rev. Neurosci. 38, 351-368. doi: 10.1146/annurev-neuro-071714-033911
    Emery, N.J., 2005. Cognitive ornithology: the evolution of avian intelligence. Phil. Trans. R. Soc. B. 361, 23-43.
    Fernandez-Juricic, E., 2012. Sensory basis of vigilance behavior in birds: synthesis and future prospects. Behav. Process. 89, 143-152. doi: 10.1016/j.beproc.2011.10.006
    Fields, L., Verhave, T., Fath, S., 1984. Stimulus equivalence and transitive associations: a methodological analysis. J. Exp. Anal. Behav. 42, 143-157. doi: 10.1901/jeab.1984.42-143
    Frost, B.J., 2009. Bird head stabilization. Curr. Biol. 19, R315-R316. doi: 10.1016/j.cub.2009.02.002
    Gadagkar, V., Puzerey, P.A., Chen, R., Baird-Daniel, E., Farhang, A.R., Goldberg, J.H., 2016. Dopamine neurons encode performance error in singing birds. Science 354, 1278-1282. doi: 10.1126/science.aah6837
    Garlick, D., Fountain, S.B., Blaisdell, A.P., 2017. Serial pattern learning in pigeons: Rule-based or associative? J. Exp. Psychol. Anim. Learn. Cogn. 43, 30-47. doi: 10.1037/xan0000109
    Geers, L., Pesenti, M., Andres, M., 2018. Visual illusions modify object size estimates for prospective action judgements. Neuropsychologia 117, 211-221. doi: 10.1016/j.neuropsychologia.2018.06.003
    Guez, D., Audley, C., Hauber, M., 2013. Transitive or not: a critical appraisal of transitive inference in animals. Ethology 119, 703-726. https://doi.org/10.1111/eth.12124.
    Gunturkun, O., Bugnyar, T., 2016. Cognition without Cortex. Trends. Cogn. Sci. 20, 291-303. doi: 10.1016/j.tics.2016.02.001
    Gunturkun, O., Koenen, C., Iovine, F., Garland, A., Pusch, R., 2018. The neuroscience of perceptual categorization in pigeons: a mechanistic hypothesis. Learn. Behav. 46, 229-241. doi: 10.3758/s13420-018-0321-6
    Gunturkun, O., von Eugen, K., Packheiser, J., Pusch, R., 2021. Avian pallial circuits and cognition: a comparison to mammals. Curr. Opin. Neurobiol. 71, 29-36.
    Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C., Braun, E.L., Braun, M.J., et al., 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763-1768. doi: 10.1126/science.1157704
    Hasselmo, M.E., 2006. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710-715. doi: 10.1016/j.conb.2006.09.002
    Hedges, S.B., 2002. The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838-849. doi: 10.1038/nrg929
    Herbranson, W.T., Karas, E., Hardin, G., 2017. Perception of angle in visual categorization by pigeons (Columba livia). Anim. Behav. Cogn. 4, 286-300. doi: 10.26451/abc.
    Herrnstein, R.J., Loveland, D.H., 1964. Complex visual concept in the pigeon. Science 146, 549-551. doi: 10.1126/science.146.3643.549
    Hsiao, Y.T., Chen, T.C., Yu, P.H., Huang, D.S., Hu, F.R., Chuong, C.M., et al., 2020. Connectivity between nidopallium caudolateral and visual pathways in color perception of zebra finches. Sci. Rep. 10, 19382. doi: 10.1038/s41598-020-76542-z
    Jarvis, E.D., Mirarab, S., Aberer, A.J., Li, B., Houde, P., Li, C., et al., 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320-1331. doi: 10.1126/science.1253451
    Johnston, M., Anderson, C., Colombo, M., 2017. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia). Behav. Brain Res. 317, 382-392. doi: 10.1016/j.bbr.2016.10.003
    Karten, H.J., 2015. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian 'neocortex'. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20150060-20150060. doi: 10.1098/rstb.2015.0060
    Knudsen, E.I., 2018. Neural circuits that mediate selective attention: a comparative perspective. Trends. Neurosci. 41, 789-805. doi: 10.1016/j.tins.2018.06.006
    Koenen, C., Pusch, R., Broker, F., Thiele, S., Gunturkun, O., 2016. Categories in the pigeon brain: a reverse engineering approach. J. Exp. Anal. Behav. 105, 111-122. doi: 10.1002/jeab.179
    Krauzlis, R.J., Bogadhi, A.R., Herman, J.P., Bollimunta, A., 2018. Selective attention without a neocortex. Cortex 102, 161-175. doi: 10.1016/j.cortex.2017.08.026
    Krutzfeldt, N.O., Wild, J.M., 2005. Definition and novel connections of the entopallium in the pigeon (Columba livia). J. Comp. Neurol. 490, 40-56. doi: 10.1002/cne.20627
    Ksepka, D.T., Balanoff, A.M., Smith, N.A., Bever, G.S., Bhullar, B.S., Bourdon, E., et al., 2020. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, e2023.
    Kumar, S., Hedges, S.B., 1998. A molecular timescale for vertebrate evolution. Nature 392, 917-920. doi: 10.1038/31927
    Lazareva, O.F., Smirnova, A.A., Bagozkaja, M.S., Zorina, Z.A., Rayevsky, V.V., Wasserman, E.A., 2004. Transitive responding in hooded crows requires linearly ordered stimuli. J. Exp. Anal. Behav. 82, 1-19. doi: 10.1901/jeab.2004.82-1
    Levenson, R.M., Krupinski, E.A., Navarro, V.M., Wasserman, E.A., 2015. Pigeons (Columba livia) as trainable observers of pathology and radiology breast cancer images. PLoS ONE 10, e0141357. doi: 10.1371/journal.pone.0141357
    Liu, Y., Xin, Y., Xu, N.L., 2021. A cortical circuit mechanism for structural knowledge-based flexible sensorimotor decision-making. Neuron 109, 2009-2024. doi: 10.1017/s001675682100056x
    Lombardi, C.M., 2007. Matching and oddity relational learning by pigeons (Columba livia): transfer from color to shape. Anim. Cognit. 11, 67-74. doi: 10.1007/s10071-007-0087-2
    Ma, X., Zhang, Y., Wang, L., Li, N., Barkai, E., Zhang, X., et al., 2020. The firing of theta state-related septal cholinergic neurons disrupt hippocampal ripple oscillations via muscarinic receptors. J. Neurosci. 40, 3591-3603. doi: 10.1523/jneurosci.1568-19.2020
    Manns, M., Romling, J., 2012. The impact of asymmetrical light input on cerebral hemispheric specialization and interhemispheric cooperation. Nat. Commun. 3, 696. doi: 10.1038/ncomms1699
    Marzluff, J.M., Miyaoka, R., Minoshima, S., Cross, D.J., 2012. Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces. Proc. Natl. Acad. Sci. U. S. A. 109, 15912-15917. doi: 10.1073/pnas.1206109109
    Mikolasch, S., Kotrschal, K., Schloegl, C., 2013. Transitive inference in jackdaws (Corvus monedula). Behav. Process. 92, 113-117. doi: 10.1016/j.beproc.2012.10.017
    Moll, F.W., Nieder, A., 2015. Cross-modal associative mnemonic signals in crow endbrain neurons. Curr. Biol. 25, 2196-2201. doi: 10.1016/j.cub.2015.07.013
    Morandi-Raikova, A., Danieli, K., Lorenzi, E., Rosa-Salva, O., Mayer, U., 2021. Anatomical asymmetries in the tectofugal pathway of dark-incubated domestic chicks: Rightwards lateralization of parvalbumin neurons in the entopallium. Laterality 26, 163-185. doi: 10.1080/1357650x.2021.1873357
    Murphy, M.S., Brooks, D.I., Cook, R.G., 2015. Pigeons use high spatial frequencies when memorizing pictures. J. Exp. Psychol. Anim. Learn. Cogn. 41, 277-285. doi: 10.1037/xan0000055
    Ng, B.S., Grabska-Barwinska, A., Gunturkun, O., Jancke, D., 2010. Dominant vertical orientation processing without clustered maps: early visual brain dynamics imaged with voltage-sensitive dye in the pigeon visual Wulst. J. Neurosci. 30, 6713-6725. doi: 10.1523/JNEUROSCI.4078-09.2010
    Nieder, A., 2020. The adaptive value of numerical competence. Trends. Ecol. Evol. 35, 605-617. doi: 10.1016/j.tree.2020.02.009
    Nieder, A., Wagener, L., Rinnert, P., 2020. A neural correlate of sensory consciousness in a corvid bird. Science 369, 1626-1629. doi: 10.1126/science.abb1447
    Nomoto, K., Schultz, W., Watanabe, T., Sakagami, M., 2010. Temporally extended dopamine responses to perceptually demanding reward-predictive stimuli. J. Neurosci. 30, 10692-10702. doi: 10.1523/JNEUROSCI.4828-09.2010
    Norton, J.W., Corbett, J.J., 2000. Visual perceptual abnormalities: hallucinations and illusions. Semin. Neurol. 20, 111-121. doi: 10.1055/s-2000-6837
    Olkowicz, S., Kocourek, M., Lucan, R.K., Portes, M., Fitch, W.T., Herculano-Houzel, S., et al., 2016. Birds have primate-like numbers of neurons in the forebrain. P. Natl. Acad. Sci. U. S. A. 113, 7255-7260. doi: 10.1073/pnas.1517131113
    Ott, T., Nieder, A., 2019. Dopamine and cognitive control in prefrontal cortex. Trends. Cogn. Sci. 23, 213-234. doi: 10.1016/j.tics.2018.12.006
    Peissig, J.J., Young, M.E., Wasserman, E.A., Biederman, I., 2005. The role of edges in object recognition by pigeons. Perception 34, 1353-1374. doi: 10.1068/p5427
    Pepperberg, I.M., Nakayama, K., 2016. Robust representation of shape in a Grey parrot (Psittacus erithacus). Cognition 153, 146-160. doi: 10.1016/j.cognition.2016.04.014
    Punsawad, Y., Siribunyaphat, N., Wongsawat, Y., 2021. Exploration of illusory visual motion stimuli: an EEG-based brain-computer interface for practical assistive communication systems. Heliyon 7, e06457. doi: 10.1016/j.heliyon.2021.e06457
    Qadri, M.A., Cook, R.G., 2015. Experimental Divergences in the Visual Cognition of Birds and Mammals. Comp. Cogn. Behav. Rev. 10, 73-105. doi: 10.3819/ccbr.2015.100004
    Qadri, M.A., Cook, R.G., 2017. Pigeons and humans use action and pose information to categorize complex human behaviors. Vision. Res. 131, 16-25. doi: 10.1016/j.visres.2016.09.011
    Rinnert, P., Nieder, A., 2021. Neural code of motor planning and execution during goal-directed movements in crows. J. Neurosci. 41, 4060-4072. doi: 10.1523/jneurosci.0739-20.2021
    Roberts, W.A., Macpherson, K., Strang, C., 2016. Context controls access to working and reference memory in the pigeon (Columba livia). J. Exp. Anal. Behav. 105, 184-193. doi: 10.1002/jeab.188
    Rowe, M.P., 2016. 25th Annual Computational Neuroscience Meeting: CNS-2016. B.M.C. Neurosci. 17, 54. doi: 10.1186/s12868-016-0283-6
    Scarf, D., Boy, K., Uber Reinert, A., Devine, J., Gunturkun, O., Colombo, M., 2016a. Orthographic processing in pigeons (Columba livia). P. Natl. Acad. Sci. U. S. A. 113, 11272-11276. doi: 10.1073/pnas.1607870113
    Scarf, D., Stuart, M., Johnston, M., Colombo, M., 2016b. Visual response properties of neurons in four areas of the avian pallium. J. Comp. Physiol. A. Neuroethol. Sens. Neural Behav. Physiol. 202, 235-245. doi: 10.1007/s00359-016-1071-6
    Schultz, W., 1998. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1-27. doi: 10.1152/jn.1998.80.1.1
    Schultz, W., 2016. Dopamine reward prediction-error signalling: a two-component response. Nat. Rev. Neurosci. 17, 183-195. doi: 10.1038/nrn.2015.26
    Shanahan, M., Bingman, V.P., Shimizu, T., Wild, M., Gunturkun, O., 2013. Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89.
    Sigala, N., Logothetis, N.K., 2002. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318-320. doi: 10.1038/415318a
    Soto, F.A., Wasserman, E.A., 2011. Asymmetrical interactions in the perception of face identity and emotional expression are not unique to the primate visual system. J. Vis. 11, 24. doi: 10.1167/11.3.24
    Soto, F.A., Wasserman, E.A., 2014. Mechanisms of object recognition: what we have learned from pigeons. Front. Neural Circuits 8, 122.
    Spetch, M.L., Friedman, A., 2006. Pigeons see correspondence between objects and their pictures. Psychol. Sci. 17, 966-972. doi: 10.1111/j.1467-9280.2006.01814.x
    Srihasam, K., Vincent, J.L., Livingstone, M.S., 2014. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17, 1776-1783. doi: 10.1038/nn.3855
    Stacho, M., Herold, C., Rook, N., Wagner, H., Axer, M., Amunts, K., et al., 2020. A cortex-like canonical circuit in the avian forebrain. Science 369, 6511.
    Stacho, M., Strockens, F., Xiao, Q., Gunturkun, O., 2016. Functional organization of telencephalic visual association fields in pigeons. Behav. Brain Res. 303, 93-102. doi: 10.1016/j.bbr.2016.01.045
    Strockens, F., Freund, N., Manns, M., Ocklenburg, S., Gunturkun, O., 2013. Visual asymmetries and the ascending thalamofugal pathway in pigeons. Brain Struct. Funct. 218, 1197-1209. doi: 10.1007/s00429-012-0454-x
    Tanaka, K., 1996. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109-139. doi: 10.1146/annurev.ne.19.030196.000545
    Teng, Y., Vyazovska, O.V., Wasserman, E.A., 2015. Selective attention and pigeons' multiple necessary cues discrimination learning. Behav. Process. 112, 61-71. doi: 10.1016/j.beproc.2014.08.004
    Van Meir, V., Boumans, T., De Groof, G., Van Audekerke, J., Smolders, A., Scheunders, P., et al., 2005. Spatiotemporal properties of the BOLD response in the songbirds' auditory circuit during a variety of listening tasks. Neuroimage 25, 1242-1255. doi: 10.1016/j.neuroimage.2004.12.058
    Veit, L., Hartmann, K., Nieder, A., 2017. Spatially tuned neurons in corvid nidopallium caudolaterale signal target position during visual search. Cereb. Cortex 27, 1103-1112.
    Veit, L., Nieder, A., 2013. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat. Commun. 4, 2878. doi: 10.1038/ncomms3878
    Verhaal, J., Kirsch, J.A., Vlachos, I., Manns, M., Gunturkun, O., 2012. Lateralized reward-related visual discrimination in the avian entopallium. Eur. J. Neurosci. 35, 1337-1343. doi: 10.1111/j.1460-9568.2012.08049.x
    Vorobyev, M., 2003. Coloured oil droplets enhance colour discrimination. Proc. Biol. Sci. 270, 1255-1261. doi: 10.1098/rspb.2003.2381
    Vyazovska, O.V., 2021. The effect of dimensional reinforcement prediction on discrimination of compound visual stimuli by pigeons. Anim. Cogn. 24, 1329-1338. doi: 10.1007/s10071-021-01526-z
    Vyazovska, O.V., Navarro, V.M., Wasserman, E.A., 2016. Stagewise multidimensional visual discrimination by pigeons. J. Exp. Anal. Behav. 106, 58-74. doi: 10.1002/jeab.217
    Vyazovska, O.V., Teng, Y., Wasserman, E.A., 2014. Attentional tradeoffs in the pigeon. J. Exp. Anal. Behav. 101, 337-354. doi: 10.1002/jeab.82
    Waelti, P., Dickinson, A., Schultz, W., 2001. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 38-43. doi: 10.1038/35083684
    Wang, Y.C., Jiang, S., Frost, B.J., 1993. Visual processing in pigeon nucleus rotundus: luminance, color, motion, and looming subdivisions. Vis. Neurosci. 10, 21-30. doi: 10.1017/S0952523800003199
    Watanabe, S., 1991. Effects of ectostriatal lesions on natural concept, pseudoconcept, and artificial pattern discrimination in pigeons. Vis. Neurosci. 6, 497-506. doi: 10.1017/S0952523800001346
    Wei, C.A., Kamil, A.C., Bond, A.B., 2014. Direct and relational representation during transitive list linking in pinyon jays (Gymnorhinus cyanocephalus). J. Comp. Psychol. 128, 1-10. doi: 10.1037/a0034627
    Wilkie, D.M., Summers, R.J., Spetch, M.L., 1981. Effect of delay-interval stimuli on delayed symbolic matching to sample in the pigeon. J. Exp. Anal. Behav. 35, 153-160. doi: 10.1901/jeab.1981.35-153
    Wirthlin, M., Lima, N.C.B., Guedes, R.L.M., Soares, A.E.R., Almeida, L.G.P., Cavaleiro, N.P., et al., 2018. Parrot genomes and the evolution of heightened longevity and cognition. Curr. Biol. 28, 4001-4008. doi: 10.1016/j.cub.2018.10.050
    Wood, S.M., Wood, J.N., 2015. A chicken model for studying the emergence of invariant object recognition. Front. Neural Circuits 9, 7.
    Wright, A.A., Cumming, W.W., 1971. Color-naming functions for the pigeon. J. Exp. Anal. Behav. 15, 7-17. doi: 10.1901/jeab.1971.15-7
    Wright, A.A., Delius, J.D., 2005. Learning processes in matching and oddity: the oddity preference effect and sample reinforcement. J. Exp. Psychol. Anim. Behav. Process. 31, 425-432. doi: 10.1037/0097-7403.31.4.425
    Wylie, D.R., Pakan, J.M., Gutierrez-Ibanez, C., Iwaniuk, A.N., 2008. Expression of calcium-binding proteins in pathways from the nucleus of the basal optic root to the cerebellum in pigeons. Vis. Neurosci. 25, 701-707. doi: 10.1017/S0952523808080772
    Xiao, Q., Frost, B.J., 2009. Looming responses of telencephalic neurons in the pigeon are modulated by optic flow. Brain Res. 1305, 40-46. doi: 10.1016/j.brainres.2009.10.008
    Xue, C., Kramer, L.E., Cohen, M.R., 2021. Dynamic task-belief is an integral part of decision-making. BioRxiv https://doi.org/10.1101/2021.04.05.438491.
    Yang, J., Zhang, C., Wang, S.R., 2005. Comparisons of visual properties between tectal and thalamic neurons with overlapping receptive fields in the pigeon. Brain Behav. Evol. 65, 33-39. doi: 10.1159/000081109
    Zentall, T.R., Jackson-Smith, P., Jagielo, J.A., Nallan, G.B., 1986. Categorical shape and color coding by pigeons. J. Exp. Psychol. Anim. Behav. Process. 12, 153-159. doi: 10.1037/0097-7403.12.2.153
    Zentall, T.R., Singer, R.A., Miller, H.C., 2008. Matching-to-sample by pigeons: the dissociation of comparison choice frequency from the probability of reinforcement. Behav. Process. 78, 185-190. doi: 10.1016/j.beproc.2008.01.015
    Zhao, K., Nie, J., Yang, L., Liu, X., Shang, Z., Wan, H., 2019. Hippocampus-nidopallium caudolaterale interactions exist in the goal-directed behavior of pigeon. Brain Res. Bull. 153, 257-265. doi: 10.1016/j.brainresbull.2019.09.005
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (34) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint