• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Conservation genetics of a resident population of Greylag Goose (Anser anser) at the southernmost limit of the species' distribution in Europe

Anastasios Bounas, Giorgos Catsadorakis, Annita Logotheti, Berend Voslamber, Antonios Magoulas, Dimitris Tsaparis

Anastasios Bounas, Giorgos Catsadorakis, Annita Logotheti, Berend Voslamber, Antonios Magoulas, Dimitris Tsaparis. 2018: Conservation genetics of a resident population of Greylag Goose (Anser anser) at the southernmost limit of the species' distribution in Europe. Avian Research, 9(1): 47. DOI: 10.1186/s40657-018-0139-0
Citation: Anastasios Bounas, Giorgos Catsadorakis, Annita Logotheti, Berend Voslamber, Antonios Magoulas, Dimitris Tsaparis. 2018: Conservation genetics of a resident population of Greylag Goose (Anser anser) at the southernmost limit of the species' distribution in Europe. Avian Research, 9(1): 47. DOI: 10.1186/s40657-018-0139-0

Conservation genetics of a resident population of Greylag Goose (Anser anser) at the southernmost limit of the species' distribution in Europe

More Information
  • Abstract:
    Background 

    Conservation of small and isolated populations can be challenging since they are prone to loss of genetic diversity due to random genetic drift and inbreeding. Therefore,information from the assessment of genetic diversity and structure are needed for conservation programs to determine the appropriate management strategy for the populations. We investigated the levels of genetic variability in a resident Greylag Goose (Anser anser) population,the southernmost breeding population of the species in Europe and the sole viable population of any goose species in Greece.

    Methods 

    A fragment of mtDNA Control Region and a panel of 11 microsatellite markers were used to search for any signs of genetic impoverishment and population substructure and to reveal the underlying processes through the identification of possible past demographic events.

    Results 

    The population was found to be monomorphic in the amplified fragment of the mitochondrial Control Region,with all individuals sharing a single private haplotype. Analyses showed a lack of any population substructure indicating a panmictic population. Although the population seems to have experienced a strong and recent genetic bottleneck and exhibits a small effective population size,we did not find evidence of either extremely low levels of genetic diversity or inbreeding depression.

    Conclusions 

    The recent demographic decline we detected and the combined influence of residency and anthropogenic factors have probably shaped the current genetic status. Our study population does not need emergency conservation actions but should be regarded as a discrete management unit. Future management strategies should focus on population and genetic monitoring and preventing further abundance declines that would increase the risk of genetic impoverishment.

  • Figure  1.   Map of the Greylag Goose populations compared in the present study. Populations 1‒6 are referred in the literature (Pellegrino et al. 2015). 1: Finnmark, 2: Vega, 3: Nord, 4: Oise, 5: Gironde, 6: Landes, 7: Prespa Lakes. Dark and light shaded areas represent the breeding and staging/wintering distribution of the Greylag Goose respectively. (Modified from BirdLife International)

    Figure  2.   Factorial correspondence analysis (FCA) of Greylag Goose genotypes along with 95% confidence ellipses for a different age classes (83 samples) and b different sexes (82 samples)

    Figure  3.   Two-dimensional plots of likelihood ratio profiles for pairs of parameters inferred by Migraine. Ancestral and actual effective population size (θanc, θ), and timing of the demographic history events (D) are on the log scale. Point estimates and the 95% confidence intervals for all parameters are given in Additional file 1: Table S6

    Table  1   Estimates of genetic diversity of the Greylag Goose populations

    Code Country/location Site n A Ae Ho He Fis
    1 Norway Finnmark Breeding 11 4.0 ± 0.4 2.5 ± 0.3 0.481 ± 0.085 0.530 ± 0.072 0.104 ± 0.072
    2 Vega Breeding 34 5.0 ± 0.9 2.9 ± 0.4 0.595 ± 0.055 0.590 ± 0.054 ‒0.038 ± 0.078
    3 France North Nord Wintering 17 4.9 ± 0.7 3.2 ± 0.4 0.599 ± 0.075 0.641 ± 0.046 0.084 ± 0.080
    4 Oise Wintering 15 4.3 ± 0.8 3.2 ± 0.6 0.437 ± 0.082 0.589 ± 0.079 0.246 ± 0.078
    5 France South West Gironde Wintering 24 5.1 ± 0.8 3.2 ± 0.4 0.533 ± 0.062 0.626 ± 0.056 0.140 ± 0.062
    6 Landes Wintering 45 5.4 ± 0.9 3.2 ± 0.4 0.563 ± 0.050 0.628 ± 0.054 0.090 ± 0.047
    7 Greece Prespa Breeding + wintering (resident population) 83 4.6 ± 0.9 2.3 ± 0.3 0.451 ± 0.066 0.528 ± 0.049 0.153 ± 0.087
    Values for populations 1‒6 were recalculated from Pellegrino et al. (2015), only for the loci we used in this study. Number of genotyped individuals (n) and the type of site they were collected from, number of alleles per locus (A), number of effective alleles (Ae), observed (Ho) and expected (He) heterozygosity and inbreeding coefficient (Fis). Values are presented as mean ± standard error
    下载: 导出CSV
  • Allendorf FW, Luikart G. Conservation and the genetics of populations. New York: Wiley; 2009.

    Amos W, Balmford A. When does conservation genetics matter? Heredity. 2001;87:257-65.

    Baker RR. The evolutionary ecology of animal migration. New York: Holmes & Meier Publishers; 1978.

    Belkhir K. GENETIX, logiciel sous WindowsTM pour la génétique des populations. 1999. . Accessed 24 Mar 2018.

    BirdLife International. Birds in Europe: population estimates, trends and conservation status. Cambridge: BirdLife Conservation Series; 2004.

    Catsadorakis G. The importance of Prespa National Park for breeding and wintering birds. Hydrobiologia. 1997;351:157-74.

    Catsadorakis G, Voslamber B, Logotheti A. First Greylag Geese Anser anser rubrirostris ringed in Greece. Goose Bull. 2012;15:28-31.

    Chapman J, Nakagawa S, Coltman D, Slate J, Sheldon B. A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol. 2009;18:2746-65.

    Coltman D, Pilkington J, Smith J, Pemberton J. Parasite mediated selection against inbred Soay sheep in a free-living island population. Evolution. 1999;53:1259-67.PubMed

    Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996;144:2001-14.

    Cristescu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW. Detecting bottlenecks using BOTTLENECK 1.2. 02 in wild populations: the importance of the microsatellite structure. Conserv Genet. 2010;11:1043-9.

    Crnokrak P, Roff DA. Inbreeding depression in the wild. Heredity. 1999;83:260-70.

    David P, Pujol B, Viard F, Castella V, Goudet J. Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol. 2007;16:2474-87.

    Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB. Mutational processes of simple sequence repeat loci in human populations. Proc Natl Acad Sci USA. 1994;91:3166-70.

    Do C, Waples RS, Peel D, Macbeth G, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res. 2014;14:209-14.

    Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res. 2010;10:564-7.

    Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567-87.

    Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B. Heterozygosity-fitness correlations in zebra finches: microsatellite markers can be better than their reputation. Mol Ecol. 2012;21:3237-49.

    Fox AD, Ebbinge BS, Mitchell C, Heinicke T, Aarvak T, Colhoun K, Clausen P, Dereliev S, Faragó S, Koffijberg K. Current estimates of goose population sizes in western Europe, a gap analysis and assessment of trends. Ornis Svec. 2010;20:115-27.

    Frankham R. Effective population size/adult population size ratios in wildlife: a review. Genet Res. 1995;66:95-107.

    Frankham R, Briscoe DA, Ballou JD. Introduction to conservation genetics. Cambridge: Cambridge University Press; 2002.

    Freeland JR. Molecular ecology. New York: Wiley; 2005.

    Freeman S, Jackson WM. Univariate metrics are not adequate to measure avian body size. Auk. 1990;107:69-74.

    Friesen V, Burg T, McCoy K. Mechanisms of population differentiation in seabirds. Mol Ecol. 2007;16:1765-85.

    Garza JC, Williamson EG. Detection of reduction in population size using data from microsatellite loci. Mol Ecol. 2001;10:305-18.

    Gosler A. Pattern and process in the bill morphology of the Great Tit Parus major. Ibis. 1987;129:451-76.

    Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3.2. 2002. . Accessed 20 Aug 2012.

    Grueber CE, Wallis GP, Jamieson IG. Heterozygosity-fitness correlations and their relevance to studies on inbreeding depression in threatened species. Mol Ecol. 2008;17:3978-84.

    Harrison XA, Bearhop S, Inger R, Colhoun K, Gudmundsson GA, Hodgson D, McElwaine G, Tregenza T. Heterozygosity-fitness correlations in a migratory bird: an analysis of inbreeding and single-locus effects. Mol Ecol. 2011;20:4786-95.

    Hedrick PW, Kalinowski ST. Inbreeding depression in conservation biology. Annu Rev Ecol Evol Syst. 2000;31:139-62.

    Heikkinen M, Ruokonen M, Alexander M, Aspi J, Pyhäjärvi T, Searle J. Relationship between wild greylag and European domestic geese based on mitochondrial DNA. Anim Genet. 2015;46:485-97.

    Hewitt GM. Post-glacial re-colonization of European biota. Biol J Linn Soc. 1999;68:87-112.

    Hill WG. Estimation of effective population size from data on linkage disequilibrium. Genet Res. 1981;38:209-16.

    Höglund J, Piertney SB, Alatalo RV, Lindell J, Lundberg A, Rintamäki PT. Inbreeding depression and male fitness in black grouse. Proc R Soc B. 2002;269:711-5.

    Horvath MB, Martinez-Cruz B, Negro JJ, Kalmar L, Godoy JA. An overlooked DNA source for non-invasive genetic analysis in birds. J Avian Biol. 2005;36:84-8.

    Jonker R, Kraus RH, Zhang Q, Hooft P, Larsson K, Jeugd H, Kurvers R, Wieren S, Loonen M, Crooijmans R. Genetic consequences of breaking migratory traditions in barnacle geese Branta leucopsis. Mol Ecol. 2013;22:5835-47.

    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870-4.

    Lagnel J. ParaStructure. 2015. . Accessed 22 Mar 2018.

    Leblois R, Pudlo P, Néron J, Bertaux F, Reddy Beeravolu C, Vitalis R, Rousset F. Maximum-likelihood inference of population size contractions from microsatellite data. Mol Biol Evol. 2014;31:2805-23.

    Møller AP, Fiedler W, Berthold P. Effects of climate change on birds. Oxford: Oxford University Press; 2010.

    Moritz C. Defining 'evolutionarily significant units' for conservation. Trends Ecol Evol. 1994;9:373-5.

    Navidi W, Arnheim N, Waterman M. A multiple-tubes approach for accurate genotyping of very small DNA samples by using PCR: statistical considerations. Am J Hum Genet. 1992;50:347.

    Nei M, Tajima F. Genetic drift and estimation of effective population size. Genetics. 1981;98:625-40.

    Newton I. The migration ecology of birds. London: Academic Press; 2010.

    Palacín C, Alonso JC, Martín CA, Alonso JA. Changes in bird-migration patterns associated with human-induced mortality. Conserv Biol. 2017;31:106-15.

    Palsbøll PJ, Berube M, Allendorf FW. Identification of management units using population genetic data. Trends Ecol Evol. 2007;22:11-6.

    Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28:2537-9.

    Pearce JM, Talbot SL, Pierson BJ, Petersen MR, Scribner KT, Dickson DL, Mosbech A. Lack of spatial genetic structure among nesting and wintering King Eiders. Condor. 2004;106:229-40.

    Pellegrino I, Cucco M, Follestad A, Boos M. Lack of genetic structure in greylag goose (Anser anser) populations along the European Atlantic flyway. PeerJ. 2015;3:e1161.

    Piry S, Luikart G, Cornuet J-M. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered. 1999;90:502-3.

    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-59.

    R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.

    Rohwer FC, Anderson MG. Female-biased philopatry, monogamy, and the timing of pair formation in migratory waterfowl. In: Johnston E, Richard F, editors. Current ornithology. Boston: Springer; 1988. p. 187-221.

    Ruokonen M, Kvist L, Lumme J. Close relatedness between mitochondrial DNA from seven Anser goose species. J Evol Biol. 2000;13:532-40.

    Scott DA, Rose PM. Atlas of Anatidae populations in Africa and western Eurasia. Ede: Wetlands International; 1996.

    Slate J, David P, Dodds K, Veenvliet B, Glass B, Broad T, McEwan J. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity. 2004;93:255-65.

    Stoffel MA, Esser M, Kardos M, Humble E, Nichols H, David P, Hoffman JI. InbreedR: an R package for the analysis of inbreeding based on genetic markers. Methods Ecol Evol. 2016;7:1331-9.

    Svensson L. Identification guide to European passerines. Thetford: British Trust for Ornithology; 1992.

    Szulkin M, Bierne N, David P. Heterozygosity-fitness correlations: a time for reappraisal. Evolution. 2010;64:1202-17.PubMed

    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-80.

    Toonen RJ, Hughes S. Increased throughput for fragment analysis on an ABI Prism® 377 automated sequencer using a membrane comb and STRand software. Biotechniques. 2001;31:1320-5.PubMed

    Valière N. GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes. 2002;2:377-9.

    van der Jeugd HP, van der Veen IT, Larsson K. Kin clustering in barnacle geese: familiarity or phenotype matching? Behav Ecol. 2002;13:786-90.

    Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535-8.

    Waples RS. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet. 2006;7:167.

    Weiß BM, Poggemann K, Olek K, Foerster K, Hirschenhauser K. Isolation and characterization of microsatellite marker loci in the greylag goose (Anser anser). Mol Ecol Res. 2008;8:1411-3.

    Wickham H, Chang W. Ggplot2: an implementation of the grammar of graphics. 2015. . Accessed 30 Mar 2018.

    Willoughby JR, Sundaram M, Wijayawardena BK, Lamb MC, Kimble SJ, Ji Y, Fernandez NB, Antonides JD, Marra NJ, Dewoody JA. Biome and migratory behaviour significantly influence vertebrate genetic diversity. Biol J Linn Soc. 2017;121:446-57.

  • 期刊类型引用(4)

    1. Wu, H., Qi, S., Fan, S. et al. Analysis of the Mitochondrial COI Gene and Genetic Diversity of Endangered Goose Breeds. Genes, 2024, 15(8): 1037. 必应学术
    2. Mai, S., Wittor, C., Merker, S. et al. DRD4 allele frequencies in greylag geese vary between urban and rural sites. Ecology and Evolution, 2023, 13(2): e9811. 必应学术
    3. Vavylis, D., Bounas, A., Karris, G. et al. The state of breeding birds in Greece: Trends, threats, and implications for conservation. Bird Conservation International, 2021, 31(4): 495-509. 必应学术
    4. Abdel-Kafy, E.-S.M., Ramadan, S.I., Ali, W.H. et al. Genetic and phenotypic characterization of domestic geese (Anser anser) in egypt. Animals, 2021, 11(11): 3106. 必应学术

    其他类型引用(0)

图(3)  /  表(1)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  138
  • PDF下载量:  20
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-05-02
  • 录用日期:  2018-12-12
  • 网络出版日期:  2022-04-24
  • 发布日期:  2018-12-20

目录

    Corresponding author: Dimitris Tsaparis, tsaparis@hcmr.gr

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回