Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Zhijun Huang, Xiaoping Zhou, Wenzhen Fang, Xiaolin Chen. 2022: Migration and wintering of vulnerable adult Chinese Egrets (Egretta eulophotes) revealed by GPS tracking. Avian Research, 13(1): 100055. doi: 10.1016/j.avrs.2022.100055
Citation: Zhijun Huang, Xiaoping Zhou, Wenzhen Fang, Xiaolin Chen. 2022: Migration and wintering of vulnerable adult Chinese Egrets (Egretta eulophotes) revealed by GPS tracking. Avian Research, 13(1): 100055. doi: 10.1016/j.avrs.2022.100055

Migration and wintering of vulnerable adult Chinese Egrets (Egretta eulophotes) revealed by GPS tracking

doi: 10.1016/j.avrs.2022.100055
More Information
  • Corresponding author: E-mail address: wzfang@xmu.edu.cn (W. Fang); E-mail address: xlchen@xmu.edu.cn (X. Chen)
  • Received Date: 01 Mar 2022
  • Accepted Date: 25 Jul 2022
  • Rev Recd Date: 25 Jul 2022
  • Available Online: 11 Oct 2022
  • Publish Date: 29 Aug 2022
  • Knowledge of migratory bird requirements is critical to developing conservation plans for vulnerable migratory species. This study aimed to determine the migration routes, wintering areas, habitat uses, and mortalities of adult Chinese Egrets (Egretta eulophotata). Sixty adult Chinese Egrets (31 females and 29 males) on an uninhabited offshore breeding island in Dalian, China were tracked using GPS satellite transmitters. GPS locations recorded at 2 ​h intervals from June 2019 to August 2020 were used for analysis. A total of 44 and 17 tracked adults completed their autumn and spring migrations, respectively. Compared with autumn migration, tracked adults displayed more diverse routes, higher number of stopover sites, slower migration speed, and longer migration duration in the spring. Results indicated that migrant birds had different behavioral strategies during the two migratory seasons. The spring migration duration and stopover duration for females were significantly longer than those for males. A positive correlation existed between the spring arrival and spring departure dates, as well as between the spring arrival date and stopover duration. This finding indicated that the egrets that arrived early at the breeding grounds left the wintering areas early and had a shorter stopover duration. Adult birds preferred intertidal wetlands, woodlands, and aquaculture ponds during migration. During the wintering period, adults preferred offshore islands, intertidal wetlands, and aquaculture ponds. Adult Chinese Egrets showed a relatively low survival rate compared with most other common ardeid species. Dead specimens were found in aquaculture ponds, indicating human disturbance as the main cause of death of this vulnerable species. These results highlighted the importance of resolving conflicts between egrets and human-made aquaculture wetlands and protecting intertidal flats and offshore islands in natural wetlands through international cooperation. Our results contributed to the hitherto unknown annual spatiotemporal migration patterns of adult Chinese Egrets, thereby providing an important basis for the conservation of this vulnerable species.


  • loading
  • Åkesson, S., Bakam, H., Hernandez, E.M., Ilieva, M., Bianco, G., 2021. Migratory orientation in inexperienced and experienced avian migrants. Ethol. Ecol. Evol. 33, 206-229. doi: 10.1080/03949370.2021.1905076
    Alerstam, T., 2011. Optimal bird migration revisited. J. Ornithol. 152(Suppl. 1), 5-23. doi: 10.1007/s10336-011-0694-1
    Alonso, H., Correia, R.A., Marques, A.T., Palmeirim, J.M., Moreira, F., Silva, J.P., 2020. Male post-breeding movements and stopover habitat selection of an endangered short-distance migrant, the little bustard Tetrax tetrax. Ibis 16, 279-292. doi: 10.1111/ibi.12706
    Bai, J., Weitekamp, C.A., Frye, K., Sieving, K.E., 2021. Homeward bound: canopy cover and species identity influence non-breeding season homing success and speed in forest birds. Avian Res. 12, 23. doi: 10.1186/s40657-021-00260-x
    Bates, E.M., Koczur, L.M., Ballard, B.M., 2015. Post-fledging survival and dispersal of juvenile reddish egrets (Egretta rufescens). Waterbirds 38, 401-416. doi: 10.1675/063.038.0403
    BirdLife International, 2020. Species factsheet: Egretta eulophotes. http://www.birdlife.org. (accessed 28 Jan 2020).
    Calenge, C., 2019. Home range estimation in R: the adehabitatHR Package. https://cran.r-project.org/web/packages/adehabitatHR/vignettes/adehabitatHR.pdf. (accessed 10 Sep 2020).
    Callo, P.A., Morton, E.S., Stutchbury, B.J.M., 2013. Prolonged spring migration in the red-eyed vireo (Vireo olivaceus). Auk 130, 240-246. doi: 10.1525/auk.2013.12213
    Carneiro, C., Gunnarsson, T.G., Alves, J.A., 2019. Faster migration in autumn than in spring: seasonal migration patterns and non-breeding distribution of Icelandic whimbrels Numenius phaeopus islandicus. J. Avian Biol. 50, e01938.
    Cezilly, F., 1997. Demographic studies of wading birds: an overview. Colon. Waterbirds 20, 121-128. doi: 10.2307/1521774
    Cohen, B.S., Prebyl, T.J., Collier, B.A., Chamberlain, M.J., 2018. Home range estimator method and GPS sampling schedule affect habitat selection inferences for wild turkeys. Wildlife Soc. Bull. 42, 150-159. doi: 10.1002/wsb.845
    Cooper, N.W., Hallworth, M.T., Marra, P.P., 2017. Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird. J. Avian Biol. 48, 209-219. doi: 10.1111/jav.01096
    Cresswell, W., 2014. Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156, 493-510. doi: 10.1111/ibi.12168
    Crysler, Z.J., Ronconi, R.A., Taylor, P.D., 2016. Differential fall migratory routes of adult and juvenile Ipswich sparrows (Passerculus sandwichensis princeps). Mov. Ecol. 4, 3. doi: 10.1186/s40462-016-0067-8
    Dhanjal-Adams, K.L., Klaassen, M., Nicol, S., Possingham, H.P., Chades, I., Fuller, R.A., 2017. Setting conservation priorities for migratory networks under uncertainty. Conserv. Biol. 31, 646-656. doi: 10.1111/cobi.12842
    Fidorra, J.C., Frederick, P.C., Evers, D.C., Meyer, K.D., 2016. Selection of human-influenced and natural wetlands by great egrets at multiple scales in the southeastern USA. Condor 118, 46-56. doi: 10.1650/CONDOR-14-117.1
    Fox, A.D., Frederiksen, M., Heinicke, T., Clausen, K.K., van Der Jeugd, H.P., 2021. Annual survival estimates of taiga Anser fabalis and tundra bean geese A. serrirostris wintering in the Netherlands, 1967-1987. J. Ornithol. 162, 925-929. doi: 10.1007/s10336-021-01883-z
    Galarza, A., Arizaga, J., 2014. Population dynamics of a colony of little egrets Egretta garzetta at an estuary in northern Spain. Ardeola 61, 285-296. doi: 10.13157/arla.61.2.2014.285
    Gardner, R.C., Finlayson, C.M., Okuno, E., 2018. Global wetland outlook: technical note to introduction. Gland, Switzerland: Ramsar Convention Secretariat. http://www.ramsar.org/resources. (accessed 15 Feb 2021).
    Google Inc., 2013. Google Earth Pro. computer program. Google Inc., Mountain View.
    Hadjikyriakou, T.G., Nwankwo, E.C., Virani, M.Z., Kirschel, A.N.G., 2020. Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov. Ecol. 8, 1-14. doi: 10.1186/s40462-019-0184-2
    Hafner, H., Kayser, Y., Boy, V., Fasola, M., Julliard, A., Pradel, R., et al., 1998. Local survival, natal dispersal, and recruitment in little egrets Egretta garzetta. J. Avian Biol. 29, 216-227. doi: 10.2307/3677103
    Harrison, X.A., Blount, J.D., Inger, R., Norris, D.R., Bearhop, S., 2011. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4-18. doi: 10.1111/j.1365-2656.2010.01740.x
    Hedenström, A., 2008. Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos. T. Roy. Soc. B. 363, 287-299. doi: 10.1098/rstb.2007.2140
    Hewson, C.M., Thorup, K., Pearce-Higgins, J.W., Atkinson, P.W., 2016. Population decline is linked to migration route in the common cuckoo. Nat. Commun. 7, 12296. doi: 10.1038/ncomms12296
    Huang, Z., Zhou, X., Fang, W., Chen, X., 2021. Autumn migration routes and wintering areas of juvenile Chinese egrets (Egretta eulophotes) revealed by GPS tracking. Avian Res. 12, 65. doi: 10.1186/s40657-021-00297-y
    Huschle, G., Toepfer, J.E., Douglas, D.C., 2013. Migration and wintering areas of American bitterns (Botaurus lentiginosus) that summer in Central North America as determined by satellite and radio telemetry, 1998-2003. Waterbirds 36, 300-309. doi: 10.1675/063.036.0307
    Jahn, A.E., Cueto, V.R., Fox, J.W., Husak, M.S., Kim, D.H., Landoll, D.V., et al., 2013. Migration timing and wintering areas of three species of flycatchers (Tyrannus) breeding in the Great Plains of North America. Auk 130, 247-257. doi: 10.1525/auk.2013.13010
    Jorge, P.E., Sowter, D., Marques, P.A.M., 2011. Differential annual movement patterns in a migratory species: effects of experience and sexual maturation. PLoS ONE 6, e22433. doi: 10.1371/journal.pone.0022433
    Jourdan, C., Fort, J., Pinaud, D., Delaporte, P., Gernigon, J., Guenneteau, S., et al., 2021. Highly diversified habitats and resources influence habitat selection in wintering shorebirds. J. Ornithol. 162, 823-838. doi: 10.1007/s10336-021-01873-1
    Kirby, J.S., Stattersfield, A.J., Butchart, S.H.M., Evans, M.I., Grimmett, R.F.A., Jones, V.R., et al., 2008. Key conservation issues for migratory land- and waterbird species on the world's major flyways. Bird Conserv. Int. 18(Suppl. 1), 49-73.
    Klaassen, R.H.G., Strandberg, R., Hake, M., Olofsson, P., Toettrup, A.P., Alerstam, T., 2010. Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry. J. Avian Biol. 41, 200-207. doi: 10.1111/j.1600-048X.2010.05058.x
    Koczur, L.M., Ballard, B.M., Green, M.C., 2017. Survival of adult reddish egrets Egretta rufescens marked with satellite transmitters. Endang. Species Res. 34, 103-107. doi: 10.3354/esr00846
    Koczur, L.M., Kent, G.M., Ballard, B.M., Meyer, K.D., Green, M.C., 2018. Space use and movements of adult reddish egrets (Egretta rufescens) during winter. Waterbirds 41, 1-15. doi: 10.1675/063.041.0102
    Kölzsch, A., Muskens, G.J.D.M., Kruckenberg, H., Glazov, P., Weinzierl, R., Nolet, B.A., et al., 2016. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos 125, 1496-1507. doi: 10.1111/oik.03121
    Kushlan, J.A., Hancock, J.A., 2005. The Herons. Oxford University Press, New York.
    Kushlan, J.A., 2018. Heron conservation - a history. Waterbirds 41, 345-354. doi: 10.1675/063.041.0411
    Ledwon, M., Betleja, J., 2015. Post-breeding migration of night herons Nycticorax nycticorax tracked by GPS/GSM transmitters. J. Ornithol. 156, 313-316. doi: 10.1007/s10336-014-1131-z
    Lemke, H.W., Tarka, M., Klaassen, R.H.G., Åkesson, M., Bensch, S., Hasselquist, D., et al., 2013. Annual cycle and migration strategies of a trans-Saharan migratory songbird: a geolocator study in the great reed warbler. PLoS ONE 8, e79209. doi: 10.1371/journal.pone.0079209
    Leu, M., Thompson, C.W., 2002. The potential importance of migratory stopover sites as flight feather molt staging areas: a review for neotropical migrants. Biol. Conserv. 106, 45-56. doi: 10.1016/S0006-3207(01)00228-2
    Li, X., Wang, X., Fang, L., Batbayar, N., Natsagdorj, T., Davaasuren, B., et al., 2020. Annual migratory patterns of Far East greylag geese (Anser anser rubrirostris) revealed by GPS tracking. Integr. Zool. 15, 213-223. doi: 10.1111/1749-4877.12414
    Lok, T., Overdijk, O., Piersma, T., 2015. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett. 11, 20140944. doi: 10.1098/rsbl.2014.0944
    Marion, L., 2000. Aquaculture. In: Kushlan, J.A., Hafner, H. (Eds. ), Heron Conservation. Academic Press, San Diego, pp. 269-292.
    Marra, P.P., Cohen, E.B., Loss, S.R., Rutter, J.E., Tonra, C.M., 2015. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552. doi: 10.1098/rsbl.2015.0552
    McKinnon, E.A., Fraser, K.C., Stanley, C.Q., Stutchbury, B.J.M., 2014. Tracking from the tropics reveals behaviour of juvenile songbirds on their first spring migration. PLoS ONE 9, e105605. doi: 10.1371/journal.pone.0105605
    Monti, F., Gremillet, D., Sforzi, A., Sammuri, G., Dominici, J.M., Bagur, R.T., et al., 2018. Migration and wintering strategies in vulnerable Mediterranean osprey populations. Ibis 160, 554-567. doi: 10.1111/ibi.12567
    Naef-Daenzer, B., Gruebler, M.U., 2016. Post-fledging survival of altricial birds: ecological determinants and adaptation. J. Field Ornithol. 87, 227-250. doi: 10.1111/jofo.12157
    Ng, J.W., Knight, E.C., Scarpignato, A.L., Harrison, A.L., Bayne, E.M., Marra, P.P., 2018. First full annual cycle tracking of a declining aerial insectivorous bird, the common nighthawk (Chordeiles minor), identifies migration routes, nonbreeding habitat, and breeding site fidelity. Can. J. Zool. 96, 869-875. doi: 10.1139/cjz-2017-0098
    Nilsson, C., Klaassen, R.H.G., Alerstam, T., 2013. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181, 837-845. doi: 10.1086/670335
    Ouwehand, J., Both, C., 2017. African departure rather than migration speed determines variation in spring arrival in pied flycatchers. J. Anim. Ecol. 86, 88-97. doi: 10.1111/1365-2656.12599
    Page, G.W., Warnock, N., Tibbitts, T.L., Jorgensen, D., Hartman, C.A., Stenzel, L.E., 2014. Annual migratory patterns of long-billed curlews in the American West. Condor 116, 50-61. doi: 10.1650/CONDOR-12-185-R2.1
    Pang, C., Sung, Y.H., Chung, Y., Ying, H., Fong, H.H.N., Yu, Y., 2020. Spatial ecology of little egret (Egretta garzetta) in Hong Kong uncovers preference for commercial fishponds. PeerJ 8, e9893. doi: 10.7717/peerj.9893
    Pearman, M., Groot, L.D., Holroyd, G.L., Thunberg, S., 2020. Earlier spring arrival of the mountain bluebird in central Alberta, Canada. Western Birds 51, 47-58. doi: 10.21199/wb51.1.4
    Pineau, O., 2000. Conservation of wintering and migratory habitat. In: Kushlan, J.A., Hafner, H. (Eds. ), Heron Conservation. Academic Press, San Diego, pp. 237-250.
    Rappole, J.H., 2013. The avian migrant. https://doi.org/10.7312/rapp14678. (accessed 18 Mar 2020).
    R Development Core Team, 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
    Rotics, S., Kaatz, M., Turjeman, S., Zurell, D., Wikelski, M., Sapir, N., et al., 2018. Early arrival at breeding grounds: causes, costs and a trade-off with overwintering latitude. J. Anim. Ecol. 87, 1627-1638. doi: 10.1111/1365-2656.12898
    Schwemmer, P., Mercker, M., Garthe, S., 2021. Migrating curlews on schedule: departure and arrival patterns of a long-distance migrant depend on time and breeding location rather than on wind conditions. Mov. Ecol. 9, 9. doi: 10.1186/s40462-021-00252-y
    Strandberg, R., Klaassen, R.H.G., Hake, M., Alerstam, T., 2010. How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors. Biol. Lett. 6, 297-300. doi: 10.1098/rsbl.2009.0785
    Urbanek, S., Bibiko, H.J., Stefano, M.L., 2018. R: a language and environment for statistical computing. https://www.r-project.org. (accessed 26 May 2020).
    van Der Winden, J., Poot, M.J.M., van Horssen, P.W., 2010. Large birds can migrate fast: the post-breeding flight of the purple heron Ardea purpurea to the Sahel. Ardea 98, 395-402. doi: 10.5253/078.098.0313
    van Der Winden, J., van Horssen, P.W., Poot, M.J.M., Gyimesi, A., 2012. Pre-migratory behaviour of the purple heron in the Netherlands. Ardeola 59, 3-15. doi: 10.13157/arla.59.1.2012.3
    Wang, Z., Zhou, X., Lin, Q., Fang, W., Chen, X., 2011. New primers for sex identification in the Chinese egret and other ardeid species. Mol. Ecol. Resour. 11, 176-179. doi: 10.1111/j.1755-0998.2010.02879.x
    Webster, M.S., Marra, P.P., Haig, S.M., Bensch, S., Holmes, R.T., 2002. Links between worlds: unraveling migratory connectivity. Trends Ecol. Evol. 17, 76-83. doi: 10.1016/S0169-5347(01)02380-1
    Wlodarczyk, R., Szafara, D., Kaczmarek, K., Janiszewski, T., Minias, P., 2020. Migratory behaviour and survival of great egrets after range expansion in central Europe. PeerJ 8, e9002. doi: 10.7717/peerj.9002
    Xu, H., Yang, Z., Liu, D., Jia, R., Chen, L., Liang, B., et al., 2022. Autumn migration routes of fledgling Chinese egrets (Egretta eulophotes) in Northeast China and their implications for conservation. Avian Res. 13, 100018. doi: 10.1016/j.avrs.2022.100018
    Yu, Y.T., Swennen, C., 2004. Habitat use of the black-faced spoonbill. Waterbirds 27, 129-134. doi: 10.1675/1524-4695(2004)027[0129:HUOTBS]2.0.CO;2
    Zhang, H., Zhang, F., Zhang, Y., 2018b. Study on the migration of subadult Egretta eulophotes by statellite tracking at Fantuozi island Dalian city. Sichuan J. Zool. 37, 519-524 (in Chinese).
    Zhang, S.D., Ma, Z., Choi, C.Y., Peng, H.B., Bai, Q.Q., Liu, W.L., et al., 2018a. Persistent use of a shorebird staging site in the Yellow Sea despite severe declines in food resources implies a lack of alternatives. Bird Conserv. Int. 28, 534-548. doi: 10.1017/s0959270917000430
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (40) PDF downloads(4) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint