Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Zhehan Dong, Shangmingyu Zhang, Yuwen Cheng, Xingcheng He, Ian Haase, Yi Liang, Yong Jiang, Yongjie Wu. 2022: Comparative analysis of the intestinal tract microbiota and feeding habits of five sympatric flycatchers. Avian Research, 13(1): 100050. doi: 10.1016/j.avrs.2022.100050
Citation: Zhehan Dong, Shangmingyu Zhang, Yuwen Cheng, Xingcheng He, Ian Haase, Yi Liang, Yong Jiang, Yongjie Wu. 2022: Comparative analysis of the intestinal tract microbiota and feeding habits of five sympatric flycatchers. Avian Research, 13(1): 100050. doi: 10.1016/j.avrs.2022.100050

Comparative analysis of the intestinal tract microbiota and feeding habits of five sympatric flycatchers

doi: 10.1016/j.avrs.2022.100050
More Information
  • Corresponding author: E-mail address: wuyongjie@scu.edu.cn (Y. Wu)
  • Received Date: 24 Apr 2022
  • Accepted Date: 11 Jul 2022
  • Rev Recd Date: 05 Jul 2022
  • Available Online: 11 Oct 2022
  • Publish Date: 19 Jul 2022
  • Gut microbiota and host interactions co-evolve and develop into stably adapted microbial communities and play vital roles in maintaining the health of organisms. Diet is supposed to be an important driver of differences in gut microbiota, but previous studies would commonly use literature depictions, which are essential but inaccurate, to explain the effects of diet on the gut microbiota of wild birds. In this study, we collected intestinal samples from five sympatric flycatchers to compare the gut microbial differences using bacterial 16S rRNA genes from Illumina MiSeq platform. Over 1,642,482 quality-filtered sequences from 18 16S rRNA libraries were obtained and distinct compositions and diversities of gut microbiota were found in five flycatchers. Their gut microbiota is mainly from the four bacterial phyla of Proteobacteria, Firmicutes, Actinomycetes, and Bacteroidetes, but at the genus level showed a significant difference. Functional predictions revealed that the metabolic capacity of the gut microbiota of five flycatchers is greatly distinguished at KEGG level 3. And multiple food fragments showed a significant correlation with gut microbiota. Besides, the significant differences in the specific composition of the diets of the five insectivorous flycatchers indicated the differentiation of dietary niches. The study of the gut microbiota and feeding habits of sympatric flycatchers would increase the understanding of the gut microbial diversity of wild birds, and also improve our cognition of the co-evolution and co-adaptation within the host gut microbiota relations.

     

  • loading
  • Al-Asmakh, M., Stukenborg, J.B., Reda, A., Anuar, F., Strand, M.L., Hedin, L., et al., 2014. The gut microbiota and developmental programming of the testis in mice. PLoS One 9, e103809. doi: 10.1371/journal.pone.0103809
    Amato, K.R., Sanders, J.G., Song, S.J., Nute, M., Metcalf, J.L., Thompson, L.R., et al., 2019. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576-587. doi: 10.1038/s41396-018-0175-0
    Barçante, L., Vale, M.M., Maria, M.A., 2017. Altitudinal migration by birds: a review of the literature and a comprehensive list of species. J. Field Ornithol. 88, 321-335. doi: 10.1111/jofo.12234
    Binda, C., Lopetuso, L.R., Rizzatti, G., Gibiino, G., Cennamo, V., Gasbarrini, A., 2018. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 50, 421-428. doi: 10.1016/j.dld.2018.02.012
    Bodawatta, K.H., Freiberga, I., Puzejova, K., Sam, K., Poulsen, M., Jøensson, K.A., 2021a. Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets. Anim. Microbiome. 3, 1-14. doi: 10.1186/s42523-020-00062-4
    Bodawatta, K.H., Hird, S.M., Grond, K., Poulsen, M., Jøensson, K.A., 2022a. Avian gut microbiomes taking flight. Trends Microbiol. 30, 268-280. doi: 10.1016/j.tim.2021.07.003
    Bodawatta, K.H., Klečková, I., Klečka, J., Pužejová, K., Koane, B., Poulsen, M., et al. 2022b. Specific gut bacterial responses to natural diets of tropical birds. Sci. Rep. 12, 1-15. doi: 10.1038/s41598-021-99269-x
    Bodawatta, K.H., Koane, B., Maiah, G., Sam, K., Poulsen, M., Jønsson, K.A., 2021b. Species-specific but not phylosymbiotic gut microbiomes of New Guinean passerine birds are shaped by diet and flight-associated gut modifications. Proc. R. Soc. B. 288, 20210446. doi: 10.1098/rspb.2021.0446
    Bodawatta, K.H., Sam, K., Jønsson, K.A., Poulsen, M., 2018. Comparative analyses of the digestive tract microbiota of New Guinean passerine birds. Front. Microbiol. 9, 1830. doi: 10.3389/fmicb.2018.01830
    Bordenstein, S.R., Theis, K.R., 2015. Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biol. 13, 1-23.
    Borenstein, M., Hedges, L.V., Higgins, J.P.T., Rothstein, H.R., 2021. Introduction to Meta-analysis. John Wiley & Sons, Chichester.
    Bradley, P.H., Pollard, K.S., 2017. Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome. Microbiome, 5, 1-23. doi: 10.1186/s40168-016-0209-7
    Buckley, D.H., Huangyutitham, V., Nelson, T.A., Rumberger, A., Thies, J.E., 2006. Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl. Environ. Microbiol. 72, 4522-4531. doi: 10.1128/AEM.00149-06
    Burge, M.N., 1988. Fungi in Biological Control Systems. Manchester University Press, Manchester.
    Burin, G., Kissling, W.D., Guimarães, P.R., Şekercioğlu, Ç.H., Quental, T.B., 2016. Omnivory in birds is a macroevolutionary sink. Nat. Commun. 7, 1-10.
    Capunitan, D.C., Johnson, O., Terrill, R.S., Hird, S.M., 2020. Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol. Ecol. 29, 829-847. doi: 10.1111/mec.15354
    Chen, H., Boutros, P.C., 2011. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 35. doi: 10.1186/1471-2105-12-35
    Chen, C.Y., Chen, C.K., Chen, Y.Y., Fang, A., Shaw, G.T.W., Hung, C.M., et al., 2020. Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests. Microbiome 8, 1-13. doi: 10.1186/s40168-019-0777-4
    Cho, H., Lee, W.Y., 2020. Interspecific comparison of the fecal microbiota structure in three Arctic migratory bird species. Ecol. Evol. 10, 5582-5594. doi: 10.1002/ece3.6299
    Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200. doi: 10.1093/bioinformatics/btr381
    Evans, A.D., Smith, K.W., Buckingham, D.L., Evans, J., 1997. Seasonal variation in breeding performance and nestling diet of Cirl Buntings Emberiza cirlus in England. Bird Study 44, 66-79. doi: 10.1080/00063659709461039
    Faith, J.J., Guruge, J.L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A.L., et al., 2013. The long-term stability of the human gut microbiota. Sci. Am. 341, 1237439.
    Felice, R.N., Tobias, J.A., Pigot, A.L., Goswami, A., 2019. Dietary niche and the evolution of cranial morphology in birds. Proc. R. Soc. B-Biol. Sci. 286, 20182677. https://doi.org/10.1098/rspb.2018.2677.
    Fu, R, Xiang, X, Dong, Y, Cheng, L, Zhou, L, 2020. Comparing the intestinal bacterial communies of sympatric wintering Hooded Crane (Grus monacha) and Domestic Goose (Anser anser domesticus). Avian Res. 11, 13. https://doi.org/10.1186/s40657-020-00195-9.
    Gause, G.F., 1934. Experimental analysis of Vito Volterra's mathematical theory of the struggle for existence. Science 79, 16-17. doi: 10.1126/science.79.2036.16.b
    Góngora, E., Elliott, K.H., Whyte, L., 2021. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Sci. Rep. 11, 1-12. doi: 10.1145/3485114.3485123
    Goulão, B, Santos, O, Carmo, I, 2015. The impact of migration on body weight: a review. Cad. Saude Publica. 31 (2), 229–45. doi: 10.1590/0102-311X00211913
    Greene, L.K., Williams, C.V., Junge, R.E., Mahefarisoa, K.L., Rajaonarivelo, T., Rakotondrainibe, H., et al. 2020. A role for gut microbiota in host niche differentiation. ISME J. 14, 1675-1687. doi: 10.1038/s41396-020-0640-4
    Grevé, ME, Houadria, M, Andersen, AN, Menzel, F, 2019. Niche differentiation in rainforest ant communities across three continents. Ecol. Evol. 9 (15), 8601–15. doi: 10.1002/ece3.5394
    Grond, K., Sandercock, B.K., Jumpponen, A., Zeglin, L.H., 2018. The avian gut microbiota: community, physiology and function in wild birds. J. Avian Biol. 49, e01788. doi: 10.1111/jav.01788
    Hird, S.M., Sánchez, C., Carstens, B.C., Brumfield, R.T., 2015. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 1403.
    Hou, X, Pan, S, Lin, Z, Xu, J, Zhan, X, 2021. Performance comparison of different microbial DNA extraction methods on bird feces. Avian Res .12, 19. https://doi.org/10.1186/s40657-021-00254-9.
    Hrdina, A., Romportl, D., 2017. Evaluating global biodiversity hotspots-very rich and even more endangered. J. Landsc. 10, 108-115. doi: 10.1515/jlecol-2017-0013
    Hsiung, A.C., Boyle, W.A., Cooper, R.J., Chandler, R.B., 2018. Altitudinal migration: ecological drivers, knowledge gaps, and conservation implications. Biol. Rev. 93, 2049-2070. doi: 10.1111/brv.12435
    Huang, K, Wang, J, Huang, J, Zhang, S, Vogler, AP, Liu, Q, et al., 2021. Host Phylogeny and Diet Shape Gut Microbial Communities Within Bamboo-Feeding Insects. Front. Microbiol. 12, 633075. https://doi.org/10.3389/fmicb.2021.633075.
    Hyslop, E.J., 1980. Stomach contents analysis-a review of methods and their application. J. Fish Biol. 17, 411-429. doi: 10.1111/j.1095-8649.1980.tb02775.x
    Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O., 2012. The global diversity of birds in space and time. Nature 491, 444-448. doi: 10.1038/nature11631
    Kashinskaya, E.N., Belkova, N.L., Izvekova, G.I., Simonov, E.P., Andree, K.B., Glupov, V.V., et al., 2015. A comparative study on microbiota from the intestine of Prussian carp (Carassius gibelio) and their aquatic environmental compartments, using different molecular methods. J. Appl. Microbiol. 119, 948-961. doi: 10.1111/jam.12904
    Kelly, D., King, T., Aminov, R., 2007. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat. Res. Mol. Mech. Mutagen. 622, 58-69. doi: 10.1016/j.mrfmmm.2007.03.011
    Kuczynski, J., Stombaugh, J., Walters, W.A., González, A., Caporaso, J.G., Knight, R., 2012. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Microbiol. https://doi.org/10.1002/0471250953.bi1007s36.
    Laparra, JM, Sanz, Y, 2010. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res. 61 (3), 219–25. doi: 10.1016/j.phrs.2009.11.001
    Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R., Gordon, J.I., 2008. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776-788. doi: 10.1038/nrmicro1978
    Li, T., Long, M., Li, H., Gatesoupe, F.J., Zhang, X., Zhang, Q., et al. 2017. Multi-omics analysis reveals a correlation between the host phylogeny, gut microbiota and metabolite profiles in cyprinid fishes. Front. Microbiol. 8, 1-11.
    Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957-2963. doi: 10.1093/bioinformatics/btr507
    Miyake, S, Ngugi, DK, Stingl, U, 2015. Diet strongly influences the gut microbiota of surgeonfishes. Mol. Ecol. 24 (3), 656–72. doi: 10.1111/mec.13050
    Morimoto, G., Yamaguchi, N., Ueda, K., 2006. Plumage color as a status signal in male-male interaction in the red-flanked bushrobin, Tarsiger cyanurus. J. Ethol. 24, 261-266. doi: 10.1007/s10164-005-0187-x
    Muegge, B.D., Kuczynski, J., Knights, D., Clemente, J.C., González, A., Fontana, L., et al., 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970-974. doi: 10.1126/science.1198719
    Pan, D., Yu, Z., 2014. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5, 108-119. doi: 10.4161/gmic.26945
    Pianka, E.R., 2011. Evolutionary Ecology. seventh edition. eBook.
    Pourabedin, M., Zhao, X., 2015. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett. 362, 1-8.
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al., 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596. doi: 10.1093/nar/gks1219
    Richardson, KC, Wooller, RD, 1986. The structures of the gastrointestinal tracts of honeyeaters and other small birds in relation to their diets. Aust. J. Zool. 34 (2), 119–24. doi: 10.1071/ZO9860119
    Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584. doi: 10.7717/peerj.2584
    Sangster, G., Alström, P., Forsmark, E., Olsson, U., 2010. Multi-locus phylogenetic analysis of Old World chats and flycatchers reveals extensive paraphyly at family, subfamily and genus level (Aves: Muscicapidae). Mol. Phylogenet. 57, 380-392. doi: 10.1016/j.ympev.2010.07.008
    Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185, 27-39. doi: 10.1126/science.185.4145.27
    Stanley, D., Geier, M.S., Hughes, R.J., Denman, S.E., Moore, R.J., 2013. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One 8, 6-12.
    Thomas, F., Hehemann, J.H., Rebuffet, E., Czjzek, M., Michel, G., 2011. Environmental and gut Bacteroidetes: The food connection. Front. Microbiol. 2, 1-16.
    Tomczak, M., Tomczak, E., 2014. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 1, 19-25.
    Wang, W., Gao, X., Zheng, S., Lancuo, Z., Li, Y., Zhu, L., et al. 2021a. The gut microbiome and metabolome of Himalayan Griffons (Gyps himalayensis): insights into the adaptation to carrion-feeding habits in avian scavengers. Avian Res. 12, 52. doi: 10.12691/ajcea-9-2-2
    Wang, W., Zhou, L., Fu, R., Cheng, L., Yan, S., Mahtab, N., et al., 2021b. Effects of foraging site distances on the intestinal bacterial community compositions of the sympatric wintering Hooded Crane (Grus monacha) and Domestic Duck (Anas platyrhynchos domesticus). Avian Res. 12, 20. doi: 10.1186/s40657-021-00255-8
    Whelan, CJ, Şekercioğlu, ÇH, Wenny, DG, 2015. Why birds matter: from economic ornithology to ecosystem services. J. Ornithol. 156, 227–38. doi: 10.1007/s10336-015-1229-y
    Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M.M., Jetz, W., 2014. EltonTraits 1.0 : Species-level foraging attributes of the world's birds and mammals. Ecology 95, 2027. doi: 10.1890/13-1917.1
    Wu, Y, DuBay, SG, Colwell, RK, Ran, J, Lei, F, 2017. Mobile hotspots and refugia of avian diversity in the mountains of south-west China under past and contemporary global climate change. J. Biogeogr. 44 (3), 615–26. doi: 10.1111/jbi.12862
    Xiang, B, Zhao, L, Zhang, M, 2021. Metagenome-scale metabolic network suggests folate produced by bifidobacterium longum might contribute to high-fiber-diet-induced weight loss in a prader–willi syndrome child. Microorganisms 9, 2493. https://doi.org/10.3390/microorganisms9122493.
    Xiao, F, Zhu, W, Yu, Y, He, Z, Wu, B, Wang, C, et al., 2021. Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota. npj Biofilms Microbiomes 7, 5. https://doi.org/10.1038/s41522-020-00176-2.
    Youngblut, N.D., Reischer, G.H., Walters, W., Schuster, N., Walzer, C., Stalder, G., et al., 2019. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 1-15. doi: 10.1038/s41467-018-07882-8
    Zhang, YJ, Li, S, Gan, RY, Zhou, T, Xu, DP, Li, H Bin, 2015. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 16 (4), 7493–519. doi: 10.3390/ijms16047493
    Zu, K., Luo, A., Shrestha, N., Liu, B., Wang, Z., Zhu, X., 2019. Altitudinal biodiversity patterns of seed plants along Gongga Mountain in the southeastern Qinghai-Tibetan Plateau. Ecol. Evol. 9, 9586-9596. doi: 10.1002/ece3.5483
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (25) PDF downloads(6) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return