Angst D, Buffetaut E, Lecuyer C, Amiot R. "Terror Birds" (Phorusrhacidae) from the Eocene of Europe imply trans-Tethys dispersal. PLoS One. 2013;8(11):e80357 doi: 10.1371/journal.pone.0080357 |
Baker AJ, Pereira SL. Ratites and tinamous (Paleognathae). In: The TimeTree of Life (Ed. Hedges SB, Kumar, S. Oxford University Press). Pp. 412-414; 2009 |
Baker AJ, Haddrath O, McPherson JD, Cloutier A. Genomic support for a moa-tinamou clade and adaptive morphological convergence in flightless ratites. Mol Biol Evol. 2014;31:1686-1696 doi: 10.1093/molbev/msu153 |
Bourdon E. Osteological evidence for sister group relationship between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes). Naturwissenschaften 2005;92:586-591 doi: 10.1007/s00114-005-0047-0 |
Bock, W.J., Bühler, P., 1990. The evolution and biogeographical history of the paleognathous birds. In: 100th International DO-G Meeting. Current Topics in Avian Biology, Bonn, pp. 31–36 |
Braun EL, Cracraft J, Houde P. Resolving the avian tree of life from top to bottom: The promise and potential boundaries of the phylogenomic era. In: Kraus R (editor). Avian genomics in ecology and evolution. Springer, Cham, pp. 151-210; 2019 |
Braun EL, Kimball RT. Data types and the phylogeny of Neoaves. Birds. 2021;2:1-22. https://doi.org/10.3390/birds2010001 |
Brown JW, Rest JS, Garcia-Moreno J, Sorenson MD, Mindell DP. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology. 2008;6, 6 doi: 10.2307/20205610 |
Brusatte SL, O'Connor JK, Jarvis ED. The origin and diversification of birds. Curr Biol. 2015;25:R888-898 doi: 10.1016/j.cub.2015.08.003 |
Burleigh JG, Kimball RT, Braun EL. Building the avian tree of life using a large-scale, sparse supermatrix. Mol Phylogenet Evol. 2015;84:53-63 doi: 10.1016/j.ympev.2014.12.003 |
Cantino PD, De Queiroz K. International Code of Phylogenetic Nomenclature (PhyloCode). Boca Raton: CRC Press; 2020 |
Caspers GJ, Uit de Weerd D, Wattel J, de Jong WW. A-crystallin sequences support a Galliform-Anseriform clade. Mol Phylogenet Evol. 1997;7:185-188 doi: 10.1006/mpev.1996.0384 |
Cellinese N, Dell C. RegNum -The international clade names repository. Available from: https://www.phyloregnum.org; 2020 (September 30, 2021) |
Chen A, Field DJ. Phylogenetic definitions for Caprimulgimorphae (Aves) and major constituent clades under the International Code of Phylogenetic Nomenclature. Vert. Zool. 2020;70:571-585 doi: 10.3390/rs12030571 |
Chubb, AL. New nuclear evidence for the oldest divergence among neognath birds: the phylogenetic utility of ZENK. Mol. Phylogenet Evol. 2004;30:140-151 doi: 10.1016/S1055-7903(03)00159-3 |
Clarke JA, Mindell DP, de Queiroz K, Hanson M, Norell MA, et al. Aves. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1247-1253; 2020 |
Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, et al. Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zone. Syst Biol. 2019;68:937-955 doi: 10.1093/sysbio/syz019 |
Cooper A, Penny D. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science. 1997;275:1109-1113 doi: 10.1126/science.275.5303.1109 |
Cracraft J. Toward a phylogenetic classification of the recent birds of the world (Class Aves). Auk. 1981;98:681-714 |
Cracraft J. The origin and early diversification of birds. Paleobiology. 1986;12:383-399 doi: 10.1017/S0094837300003122 |
Cracraft J. The major clades of birds. pp. 339-361 in Benton MJ (ed.). The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds. Systematics Association Special volume 35A, Clarendon Press, Oxford; 1988 |
Cracraft J. Avian higher-level relationships and classification: Nonpasseriforms. In: Dickinson EC, Remsen JV Jr (editors). The Howard and Moore complete checklist of the birds of the world. Fourth edition, vol. 1: Non-passerines. Aves Press, London, pp. xxi-xliii; 2013 |
Cracraft J, Mindell DP. The early history of modern birds: a comparison of molecular and morphological evidence. Pp. 389-403 in Fernholm B, Bremer K, Jornvall H (eds.). The Hierarchy of Life. Elsevier, Amsterdam; 1989 |
Cracraft J, Barker FK, Braun M, Harshman J, Dyke GJ, et al. Phylogenetic relationships among modern birds (Neornithes): towards an avian tree of life, in Cracraft J, Donoghue M (eds), Assembling the Tree of Life, pp. 468-489; 2004 |
De Queiroz K. Linnaean, rank-based, and phylogenetic nomenclature: restoring primacy to the link between names and taxa. Symb Bot Ups. 33:127-140; 2005 |
De Queiroz K, Cantino P, Gauthier J (eds). Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press; 2020 |
De Queiroz K, Gauthier J. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst Zool 1990;39:307-322 doi: 10.2307/2992353 |
De Queiroz K, Gauthier J. Phylogenetic taxonomy. Annu Rev Ecol Syst. 1992;23:449-480 doi: 10.1146/annurev.es.23.110192.002313 |
De Queiroz K, Gauthier J. Toward a phylogenetic system of biological nomenclature. Trends Ecol Evol 1994;9:27-31 doi: 10.1016/0169-5347(94)90231-3 |
Degrange FJ, Tambussi CP, Taglioretti ML, Dondas A, Scaglia F. A new Mesembriornithinae (Aves, Phorusrhacidae) provides new insights into the phylogeny and sensory capabilities of terror birds. J Vert Paleontol 2015;35:e912656 doi: 10.1080/02724634.2014.912656 |
del Hoyo J, Elliott A, Sargatal J (eds.). Handbook of the Birds of the World. Vol. 1. Ostrich to Ducks. Lynx Edicions, Barcelona; 1992 |
del Hoyo J, Elliott A, Sargatal J (eds.). Handbook of the Birds of the World. Vol. 6. Mousebirds to hornbills. Lynx Edicions, Barcelona; 2001 |
Dickinson EC, Remsen JV Jr. The Howard and Moore Complete Checklist of the Birds of the World (4th edition). Vol 1: Non-passerines. Aves Press, London; 2013 |
Dickinson EC, Christidis, L. The Howard and Moore Complete Checklist of the Birds of the World (4th edition). Vol 2: Passerines. Aves Press, London; 2014 |
Elzanowski A. Cretaceous birds and avian phylogeny. Courier Forschungsinst Senckenb. 1995;181:37-53 |
Ericson PGP. Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J Biogeogr. 2012;39:813-824 doi: 10.1111/j.1365-2699.2011.02650.x |
Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett. 2006;2:543-547 doi: 10.1098/rsbl.2006.0523 |
Fain MG, Houde P. Parallel radiations in the primary clades of birds. Evolution. 2004;58:2558-2573 doi: 10.1111/j.0014-3820.2004.tb00884.x |
Feduccia A. The morphological evidence for ratite monophyly: fact or fiction. Proc Int Ornithol Congr 1985;18:184-190 |
Fjeldsa J. The systematic affinities of the sandgrouse, Pteroclididae. Vidensk Medd Dansk Naturh Foren 1976;139:179-243 |
Furbringer M. Untersuchungen zur Morphologie und Systematik der Vogel, zugleich ein Beitrag zur Anatomie der Stutzund Bewegungsorgane. Bijdr Dierk. 1888;15:1-834 doi: 10.1163/26660644-01501002 |
Gadow H. Vogel. II. Systematischer Theil. In Bronn, H.G. Klassen und Ordnungen des Thier-Reichs. Leipzig: C.F. Winter Pt 4; 1893 |
Garcia-Moreno J, Sorenson MD, Mindell DP. Congruent avian phylogenies inferred from mitochondrial and nuclear DNA sequences. J Mol Evol. 2003;57:27-37 doi: 10.1007/s00239-002-2443-9 |
Garrod, AH. On certain muscles of birds and their value in the classification. Part II. Proc Zool Soc London 1874:111-123 doi: 10.1111/j.1096-3642.1874.tb02459.x |
Gauthier J, De Queiroz K. Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name “Aves”. In: Gauthier JA, Gall LF (eds), New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom, Yale Peabody Museum, New Haven, pp. 7-41; 2001 |
Gilbert P, Wu J, Simon MW, Sinsheimer JS, Alfaro ME. Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Mol Phylogenet Evol. 2018;126:116-128 doi: 10.1016/j.ympev.2018.03.033 |
Gill BJ (Convener). Checklist of the Ornithological Society of New Zealand . Checklist of the Birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington: Te Papa Press, OSNZ; 2010 |
Gill F, Donsker D, Rasmussen P (eds). IOC World Bird List (v10.2); 2020. https://www.worldbirdnames.org/new/ioc-lists/master-list-2/ [accessed 24 August 2020] |
Gordon EL, Kimball RT, Braun EL. Protein structure, models of sequence evolution, and data type effects in phylogenetic analyses of mitochondrial data: A case study in birds. Diversity 2021;13:555 doi: 10.3390/d13110555 |
Grealy A, Phillips M, Miller G, Gilbert MTP, Rouillard JM, et al. Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Mol Phylogenet Evol. 2017;109:151-163 doi: 10.1016/j.ympev.2017.01.005 |
Groth JG, Barrowclough GF. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol. 1999;12:115-123 doi: 10.1006/mpev.1998.0603 |
Gussekloo SWS, Zweers GA. The paleognathous pterygoid-palatinum complex. A true character? Neth J Zool. 1999;49:29-43 doi: 10.1163/156854299X00038 |
Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320:1763-1768 doi: 10.1126/science.1157704 |
Haddrath O, Baker AJ. Multiple nuclear genes and retroposons support vicariance and dispersal of the palaeognaths, and an Early Cretaceous origin of modern birds. Proc R Soc B. 2012;279:4617-4625 doi: 10.1098/rspb.2012.1630 |
Hansford JP, Turvey ST. Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world's largest bird. R Soc Open Sci 2018;5 (9):181295 doi: 10.1098/rsos.181295 |
Harshman J. Reweaving the tapestry: what can we learn from Sibley & Ahlquist (1990)? Auk. 1994;111:377-388 doi: 10.2307/4088601 |
Harshman J, Braun EL, Braun MJ, Huddleston CJ, Bowie RCK, et al. Phylogenomic evidence for multiple losses of flight in ratite birds. Proc Natl Acad Sci 2008;105:13462-13467 doi: 10.1073/pnas.0803242105 |
Hedges SB, Simmons MD, van Dijk MAM, Caspers GJ, de Jong WW, Sibley CG. Phylogenetic relationships of the Hoatzin, an enigmatic South American bird. Proc Natl Acad Sci USA. 1995;92:11662-11665 doi: 10.1073/pnas.92.25.11662 |
Ho CY-K, Prager EM, Wilson AC, Osuga DT, Feeney RE. Penguin evolution: protein comparisons demonstrate phylogenetic relationship to flying aquatic birds. J Mol Evol. 1976;8:271-282 doi: 10.1007/BF01731000 |
Houde P. Palaeognatous birds from the early Tertiary of the northern Hemisphere. Publ Nuttall Ornithol Club. 1988;22:1-148 |
Houde P, Olson SL. Paleognatous carinate birds from the early tertiary of North America. Science 1981;214:1236-1237 doi: 10.1126/science.214.4526.1236 |
Houde P, Olson SL. A radiation of coly-like birds from the Eocene of North America (Aves: Sandcoleiformes new order). Natural History Museum of Los Angeles County, Science Series. 1992;36:137-160 |
Houde P, Braun EL, Narula N, Minjares U, Mirarab S. Phylogenetic signal of indels and the neoavian radiation. Diversity 2019;11:108 doi: 10.3390/d11070108 |
Houde P, Braun EL, Zhou L. Deep-time demographic inference suggests ecological release as driver of neoavian adaptive radiation. Diversity 2020;12:164 doi: 10.3390/d12040164 |
Hume JP, Walters M. Extinct birds. London: Bloomsbury; 2012 |
Huxley TH. On the classification of birds; and on the taxonomic value of the modifications of certain of the cranial bones observable in that class. Proc Zool Soc London. 1867:415-472 |
ICZN. International code of zoological nomenclature. Fourth edition. London: International Trust for Zoological Nomenclature; 1999 |
Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320-1331 doi: 10.1126/science.1253451 |
Kimball RT, Oliveros CH, Wang N, White ND, Barker FK, et al. A phylogenomic supertree of birds. Diversity. 2019;11(7), 109 doi: 10.3390/d11070109 |
Kimball RT, Wang N, Heimer-McGinn V, Ferguson C, Braun EL. Identifying localized biases in large datasets: A case study using the avian tree of life. Mol Phylogenet Evol. 2013;69:1021-1032 doi: 10.1016/j.ympev.2013.05.029 |
Kooijman SA. The comparative energetics of petrels and penguins. Ecol Model. 2020;427, 109052 doi: 10.1016/j.ecolmodel.2020.109052 |
Ksepka DT, Clarke JA. New fossil mousebird (Aves: Coliiformes) with feather preservation provides insight into the ecological diversity of an Eocene North American avifauna. Zool J Linn Soc. 2010;160:685-706 doi: 10.1111/j.1096-3642.2009.00626.x |
Ksepka DT, Phillips MJ. Avian diversification patterns across the K-Pg Boundary: influence of calibrations, datasets, and model misspecification. Ann Missouri Bot Garden. 2015;100:300-328 doi: 10.3417/2014032 |
Ksepka DT, Clarke JA, Grande L. Stem parrots (Aves, Halcyornithidae) from the Green River Formation and a combined phylogeny of Pan-Psittaciformes. J Paleontol. 2011;85:835-852 doi: 10.1666/10-108.1 |
Ksepka DT, Grande L, Mayr G. 2019. Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines. Curr Biol. 2019;29:657-663 doi: 10.1016/j.cub.2018.12.040 |
Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, et al. An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of life. Mol Biol Evol. 2021;38:108-127 doi: 10.1093/molbev/msaa191 |
Kuramoto T, Nishihara H, Watanabe M, Okada, N. Determining the position of storks on the phylogenetic tree of waterbirds by retroposon insertion analysis. Gen Biol Evol. 2015;7:3180-3189 doi: 10.1093/gbe/evv213 |
Kurochkin EN. Synopsis of mesozoic birds and early evolution of class Aves. Archaeopteryx. 1995;13:47-66 |
Liu Y, Liu S, Yeh CF, Zhang N, Chen G, Que P et al. The first set of universal nuclear protein-coding loci markers for avian phylogenetic and population genetic studies. Sci Rep. 2018;8:15723 doi: 10.1038/s41598-018-33646-x |
Livezey BC. A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae). Philos Tr R Soc London B. 1998;353:2077-2151 doi: 10.1098/rstb.1998.0353 |
Livezey BC, Zusi RL Higher-order phylogenetics of modern Aves based on comparative anatomy. Neth J Zool. 2001;51:179-205 doi: 10.1163/156854201750385145 |
Livezey BC, Zusi RL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. I. Methods and characters. Bull Carnegie Mus Nat Hist. 2006;37:1-556 doi: 10.2992/0145-9058(2006)37[1:PON]2.0.CO;2 |
Livezey BC, Zusi RL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc. 2007;149:1-95 doi: 10.1111/j.1096-3642.2006.00293.x |
Manegold A. 2005. Zur Phylogenie und Evolution der „Racken”-, Specht- und Sperlingsvogel („Coraciiformes”, Piciformes und Passeriformes: Aves). PhD Dissertation. Berlin |
Marchant S, Higgins P. Handbook of Australian, New Zealand & Antarctic Birds (Vol. 1). Melbourne: Oxford University Press; 1990 |
Mayr G. Avian higher-level phylogeny: well-supported clades and what we can learn from a phylogenetic analysis of 2954 morphological characters. J Zool Syst Evol Res. 2008a;46:63-72 |
Mayr G. Phylogenetic affinities of the enigmatic avian taxon Zygodactylus based on new material from the early Oligocene of France. J Syst Palaeontol. 2008b;6:333-344 doi: 10.1017/S1477201907002398 |
Mayr G. Paleogene Fossil Birds. Heidelberg, Springer; 2009 |
Mayr G. Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds. J Zool Syst Evol Res. 2011;49:58-76 doi: 10.1111/j.1439-0469.2010.00586.x |
Mayr G. Comparative morphology of the radial carpal bone of neornithine birds and the phylogenetic significance of character variation. Zoomorphology 2014;133: 425-434 doi: 10.1007/s00435-014-0236-5 |
Mayr G. A reassessment of Eocene parrotlike fossils indicates a previously undetected radiation of zygodactyl stem group representatives of passerines (Passeriformes). Zool Scr. 2015;44:587-602 doi: 10.1111/zsc.12128 |
Mayr G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance. Chichester, Wiley-Blackwell; 2017 |
Mayr G. Hindlimb morphology of Palaeotis suggests palaeognathous affinities of the Geranoididae and other “crane-like” birds from the Eocene of the Northern Hemisphere. Acta Palaeontol Polon. 2019;64:669-678 |
Mayr G. A remarkably complete skeleton from the London Clay provides insights into the morphology and diversity of early Eocene zygodactyl near-passerine birds. J Syst Palaeontol. 2020;18:1891-1906 doi: 10.1080/14772019.2020.1862930 |
Mayr G. A partial skeleton of a new species of Tynskya Mayr, 2000 (Aves, Messelasturidae) from the London Clay highlights the osteological distinctness of a poorly known early Eocene "owl/parrot mosaic". PalZ 2021;95:337-357 doi: 10.1007/s12542-020-00541-8 |
Mayr G. Paleogene fossil birds, 2nd edition. Heidelberg, Springer; 2022 |
Mayr G, Clarke, J. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics. 2003;19:527-553 doi: 10.1111/j.1096-0031.2003.tb00387.x |
Mayr G, Ericson PGP. Evidence for a sister group relationship between the Madagascan mesites (Mesitornithidae) and cuckoos (Cuculidae). Senckenb Biol. 2004;84:119-135 |
Mayr G, Smith T. Phylogenetic affinities and taxonomy of the Oligocene Diomedeoididae, and the basal divergences amongst extant procellariiform birds. Zool J Linn Soc. 2012;166:854-875 doi: 10.1111/j.1096-3642.2012.00858.x |
McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE. 2013;8(1), e54848 doi: 10.1371/journal.pone.0054848 |
McKitrick MC. Phylogenetic analysis of avian hindlimb musculature. Misc Publ Mus Zool Univ Michigan. 1991a;179:1-85 |
McKitrick MC. Forelimb myology of loons (Gaviiformes), with comments on the relationship of loons and tubenoses (Procellariiformes). Zool J Linn Soc. 1991b;102:115-152 doi: 10.1111/j.1096-3642.1991.tb00285.x |
Meise W. Verhalten der Straussartigen Vogel und Monophylie der Ratitae. Proc Int Ornithol Congr. 1963;8:115-125 |
Mindell DP. Galloanserae. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1255-1257; 2020 |
Mindell DP, Honeycutt RL. Variability in transcribed regions of ribosomal DNA and early divergences in birds. Auk. 1989;106:539-548 |
Mindell DP, Sorenson MD, Huddleston CJ, Miranda HC, Knight A, et al. Phylogenetic relationships among and within select avian orders based on mitochondrial DNA. In Mindell DP (ed.). Avian molecular evolution and systematics. San Diego: Academic Press, pp. 213-247; 1997 |
Mitchell KJ, Llamas B, Soubrier J, Rawlence NJ, Worthy TH, Wood J, et al. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science. 2014;344:898-900 doi: 10.1126/science.1251981 |
Nesbitt SJ, Clarke JA. The anatomy and taxonomy of the exquisitely preserved Green River Formation (early Eocene) lithornithids (Aves) and the relationships of Lithornithidae. Bull Am Mus Nat Hist. 2016;406:1-91 doi: 10.1206/0003-0090-406.1.1 |
Olson SL. The fossil record of birds. Avian Biol. 1985;8:79-238 |
Perktas U, Groth J, Barrowclough G. Phylogeography, species limits, phylogeny, and classification of the turacos (Aves: Musophagidae) based on mitochondrial and nuclear DNA sequences. Am Mus Novitat. 2020;3949:1-69 doi: 10.1206/3949.1 |
Phillips MJ, Gibb GC, Crimp EA, Penny D. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst Biol. 2010;59:90-107 doi: 10.1093/sysbio/syp079 |
Poe S, Chubb AL. Birds in a bush: five genes indicate explosive evolution of avian orders. Evolution. 2004;58:404-415 doi: 10.1111/j.0014-3820.2004.tb01655.x |
Prager EM, Wilson AC. Congruency of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of cracid birds. J Mol Evol. 1976;9:45-57 doi: 10.1007/BF01796122 |
Prager EM, Wilson AC. Phylogenetic relationships and rates of evolution in birds. Acta IOC. 1980:1209-1214 |
Prager EM, Wilson AC, Osuga DT, Feeney RE. Evolution of flightless land birds on southern continents: transferrin comparisons shows monophyletic origin of ratites. J Mol Evol. 1976;8:283-294 doi: 10.1007/BF01731001 |
Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569-573 doi: 10.1038/nature15697 |
Pycraft WP. On the morphology and phylogeny of the Palaeognathae (Ratitae and Crypturi) and Neognathae (Carinatae). Trans Zool Soc London. 1900;15:149-290 doi: 10.1111/j.1096-3642.1900.tb00023.x |
Pyle P. Evolutionary implications of synapomorphic wing-molt sequences among falcons (Falconiformes) and parrots (Psittaciformes). Condor 2013;115:593-602 doi: 10.1525/cond.2013.120173 |
Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst Biol. 2017;66:857-879 doi: 10.1093/sysbio/syx041 |
Sangster G. A name for the flamingo-grebe clade. Ibis. 2005;147:612-615 doi: 10.1111/j.1474-919x.2005.00432.x |
Sangster G. Mirandornithes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1265-1267; 2020a |
Sangster G. Charadriiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1269-1272; 2020b |
Sangster G. Procellariiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1273-1276; 2020c |
Sangster G. Strigiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1277-1280; 2020d |
Sangster G. Psittaciformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1285-1288; 2020e |
Sangster G. Daedalornithes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1289-1291; 2020f |
Sangster G. Apodiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1293-1296; 2020g |
Sangster G, Mayr G. A name for the clade formed by Procellariiformes, Sphenisciformes, Ciconiiformes, Suliformes and Pelecaniformes. Vert. Zool. 2021;71:49-53 doi: 10.3897/vz.71.e61728 |
Sangster G, Collinson M, Crochet P-A, Knox AG, Parkin DT, Votier SC. Taxonomic recommendations for Western Palearctic birds: ninth report. Ibis. 2013;155:898-907 doi: 10.1111/ibi.12091 |
Sclater PL. Remarks on the present state of the systema avium. Ibis. 1880;22(4):340-350, 399-411. |
Sharpe RB. A review of recent attempts to classify birds. Proc. 2nd Int. Ornithol. Congr., Budapest; 1891 |
Sibley CG, Ahlquist JE. Phylogeny and Classification of Birds. New Haven: Yale Univ. Press; 1990 |
Sibley CG, Ahlquist JE, Monroe BL. A classification of the living birds of the world based on DNA-DNA hybridization studies. Auk. 1988;105:409-423 doi: 10.1093/auk/105.3.409 |
Simmons MP, Springer MS, Gatesy J. Gene-tree misrooting drives conflicts in phylogenomic coalescent analyses of palaeognath birds. Mol Phylogenet Evol. 2022;167:107344 doi: 10.1016/j.ympev.2021.107344 |
Slack KE, Delsuc F, Mclenachan PA, Arnason U, Penny D. Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol Phylogenet Evol. 2007;42:1-13 doi: 10.1016/j.ympev.2006.06.002 |
Smith JV, Braun EL, Kimball RT. Ratite non-monophyly: independent evidence from 40 novel loci. Syst Biol. 2013;62:35-49 doi: 10.1093/sysbio/sys067 |
Smith ND. Phylogenetic analysis of Pelecaniformes (Aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies. PLoS ONE. 2010;5(10):e13354 doi: 10.1371/journal.pone.0013354 |
Stapel SO, Leunissen JAM, Versteeg M, Wattel J, de Jong WW. Ratites as oldest offshoot of avian stem-evidence from α-crystallin A sequences. Nature 1984;311:257-259 doi: 10.1038/311257a0 |
Stegmann B. Uber die phyletischen Beziehungen zwischen Regenpfeifervogeln, Tauben und Flughuhnern. J Ornithol. 1968;109:441-445 doi: 10.1007/BF01671579 |
Suh A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool Scr. 2016;45:50-62 doi: 10.1111/zsc.12213 |
Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, et al. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Comm. 2011;2, 443 doi: 10.1038/ncomms1448 |
Suh A, Smeds L, Ellegren H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 2015;13(8), e1002224 doi: 10.1371/journal.pbio.1002224 |
Torres CR, Clarke JA. Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions. Proc R Soc B. 2018;285:20181540 doi: 10.1098/rspb.2018.1540 |
Urantowka AD, Kroczak, A, Mackiewicz P. New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral gene rearrangement in Aves. BMC Genomics. 2020;21:874 doi: 10.1186/s12864-020-07284-5 |
van Tuinen M, Butvill DB, Kirsch JAW, Hedges SB. Convergence and divergence in the evolution of aquatic birds. Proc R Soc London B. 2001;268:1345-1350 doi: 10.1098/rspb.2001.1679 |
Wang N, Braun EL, Kimball RT. Testing hypotheses about the sister group of the Passeriformes using an independent 30 locus dataset. Mol Biol Evol. 2012;29:737-750 doi: 10.1093/molbev/msr230 |
Wetmore A. A classification for the birds of the world. Smithson Misc Coll. 1960;139(11):1-37 |
Worthy TH, Holdaway RN. The lost world of the moa: prehistoric life of New Zealand. Bloomington, IN: Indiana University Press; 2002 |
Worthy TH, Degrange FJ, Handley WD, Lee MSY. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres). R Soc Open Sci. 2017;4:170975 doi: 10.1098/rsos.170975 |
Yonezawa T, Segawa T, Mori H, Campos PF, Hongoh Y, et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr Biol. 2017;27:68-77 doi: 10.1016/j.cub.2016.10.029 |
Yuri T, Kimball RT, Harshman J, Bowie RCK, Braun MJ, et al. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. Biology. 2013;2:419-444 doi: 10.3390/biology2010419 |