Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
George Sangster, Edward L. Braun, Ulf S. Johansson, Rebecca T. Kimball, Gerald Mayr, Alexander Suh. 2022: Phylogenetic definitions for 25 higher-level clade names of birds. Avian Research, 13(1): 100027. doi: 10.1016/j.avrs.2022.100027
Citation: George Sangster, Edward L. Braun, Ulf S. Johansson, Rebecca T. Kimball, Gerald Mayr, Alexander Suh. 2022: Phylogenetic definitions for 25 higher-level clade names of birds. Avian Research, 13(1): 100027. doi: 10.1016/j.avrs.2022.100027

Phylogenetic definitions for 25 higher-level clade names of birds

doi: 10.1016/j.avrs.2022.100027
More Information
  • Corresponding author: E-mail address: g.sangster@planet.nl (G. Sangster)
  • Available Online: 07 Jul 2022
  • Publish Date: 05 Apr 2022
  • Knowledge of the higher-level phylogenetic relationships of birds has grown substantially during the past two decades due to the application of genomic data. However, the nomenclature of higher-level taxa has not become more stable, due to the lack of regulation of taxon names above the level of superfamily by the ICZN, and the usage of rank-based nomenclature, which is not tied to clades in a phylogeny. Lack of regulation and the instability of rank-based nomenclature impede effective communication among systematists. We review support for higher-level avian clades using a set of 10 phylogenomic data sets, and identify clades that are supported by congruency of at least four of these. We provide formal definitions of the names of these clades based on the rules of the recently published PhyloCode. The names of 25 clades are here defined using minimum-crown-clade (n ​= ​23), minimum-clade (n ​= ​1) and maximum-crown-clade (n ​= ​1) definitions. Five new names are introduced here: Dinocrypturi, Pteroclimesites, Musophagotides, Phaethoquornithes and Pelecanes. We also review diagnostic apomorphies of the relevant clades, and identify known synonyms and homonyms. By establishing a formal link between higher-level taxon names and well-supported phylogenetic hypotheses, our phylogenetic definitions will provide a solid basis for the stabilization of avian higher-level nomenclature.

     

  • loading
  • Angst D, Buffetaut E, Lecuyer C, Amiot R. "Terror Birds" (Phorusrhacidae) from the Eocene of Europe imply trans-Tethys dispersal. PLoS One. 2013;8(11):e80357 doi: 10.1371/journal.pone.0080357
    Baker AJ, Pereira SL. Ratites and tinamous (Paleognathae). In: The TimeTree of Life (Ed. Hedges SB, Kumar, S. Oxford University Press). Pp. 412-414; 2009
    Baker AJ, Haddrath O, McPherson JD, Cloutier A. Genomic support for a moa-tinamou clade and adaptive morphological convergence in flightless ratites. Mol Biol Evol. 2014;31:1686-1696 doi: 10.1093/molbev/msu153
    Bourdon E. Osteological evidence for sister group relationship between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes). Naturwissenschaften 2005;92:586-591 doi: 10.1007/s00114-005-0047-0
    Bock, W.J., Bühler, P., 1990. The evolution and biogeographical history of the paleognathous birds. In: 100th International DO-G Meeting. Current Topics in Avian Biology, Bonn, pp. 31–36
    Braun EL, Cracraft J, Houde P. Resolving the avian tree of life from top to bottom: The promise and potential boundaries of the phylogenomic era. In: Kraus R (editor). Avian genomics in ecology and evolution. Springer, Cham, pp. 151-210; 2019
    Braun EL, Kimball RT. Data types and the phylogeny of Neoaves. Birds. 2021;2:1-22. https://doi.org/10.3390/birds2010001
    Brown JW, Rest JS, Garcia-Moreno J, Sorenson MD, Mindell DP. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology. 2008;6, 6 doi: 10.2307/20205610
    Brusatte SL, O'Connor JK, Jarvis ED. The origin and diversification of birds. Curr Biol. 2015;25:R888-898 doi: 10.1016/j.cub.2015.08.003
    Burleigh JG, Kimball RT, Braun EL. Building the avian tree of life using a large-scale, sparse supermatrix. Mol Phylogenet Evol. 2015;84:53-63 doi: 10.1016/j.ympev.2014.12.003
    Cantino PD, De Queiroz K. International Code of Phylogenetic Nomenclature (PhyloCode). Boca Raton: CRC Press; 2020
    Caspers GJ, Uit de Weerd D, Wattel J, de Jong WW. A-crystallin sequences support a Galliform-Anseriform clade. Mol Phylogenet Evol. 1997;7:185-188 doi: 10.1006/mpev.1996.0384
    Cellinese N, Dell C. RegNum -The international clade names repository. Available from: https://www.phyloregnum.org; 2020 (September 30, 2021)
    Chen A, Field DJ. Phylogenetic definitions for Caprimulgimorphae (Aves) and major constituent clades under the International Code of Phylogenetic Nomenclature. Vert. Zool. 2020;70:571-585 doi: 10.3390/rs12030571
    Chubb, AL. New nuclear evidence for the oldest divergence among neognath birds: the phylogenetic utility of ZENK. Mol. Phylogenet Evol. 2004;30:140-151 doi: 10.1016/S1055-7903(03)00159-3
    Clarke JA, Mindell DP, de Queiroz K, Hanson M, Norell MA, et al. Aves. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1247-1253; 2020
    Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, et al. Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zone. Syst Biol. 2019;68:937-955 doi: 10.1093/sysbio/syz019
    Cooper A, Penny D. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science. 1997;275:1109-1113 doi: 10.1126/science.275.5303.1109
    Cracraft J. Toward a phylogenetic classification of the recent birds of the world (Class Aves). Auk. 1981;98:681-714
    Cracraft J. The origin and early diversification of birds. Paleobiology. 1986;12:383-399 doi: 10.1017/S0094837300003122
    Cracraft J. The major clades of birds. pp. 339-361 in Benton MJ (ed.). The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds. Systematics Association Special volume 35A, Clarendon Press, Oxford; 1988
    Cracraft J. Avian higher-level relationships and classification: Nonpasseriforms. In: Dickinson EC, Remsen JV Jr (editors). The Howard and Moore complete checklist of the birds of the world. Fourth edition, vol. 1: Non-passerines. Aves Press, London, pp. xxi-xliii; 2013
    Cracraft J, Mindell DP. The early history of modern birds: a comparison of molecular and morphological evidence. Pp. 389-403 in Fernholm B, Bremer K, Jornvall H (eds.). The Hierarchy of Life. Elsevier, Amsterdam; 1989
    Cracraft J, Barker FK, Braun M, Harshman J, Dyke GJ, et al. Phylogenetic relationships among modern birds (Neornithes): towards an avian tree of life, in Cracraft J, Donoghue M (eds), Assembling the Tree of Life, pp. 468-489; 2004
    De Queiroz K. Linnaean, rank-based, and phylogenetic nomenclature: restoring primacy to the link between names and taxa. Symb Bot Ups. 33:127-140; 2005
    De Queiroz K, Cantino P, Gauthier J (eds). Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press; 2020
    De Queiroz K, Gauthier J. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst Zool 1990;39:307-322 doi: 10.2307/2992353
    De Queiroz K, Gauthier J. Phylogenetic taxonomy. Annu Rev Ecol Syst. 1992;23:449-480 doi: 10.1146/annurev.es.23.110192.002313
    De Queiroz K, Gauthier J. Toward a phylogenetic system of biological nomenclature. Trends Ecol Evol 1994;9:27-31 doi: 10.1016/0169-5347(94)90231-3
    Degrange FJ, Tambussi CP, Taglioretti ML, Dondas A, Scaglia F. A new Mesembriornithinae (Aves, Phorusrhacidae) provides new insights into the phylogeny and sensory capabilities of terror birds. J Vert Paleontol 2015;35:e912656 doi: 10.1080/02724634.2014.912656
    del Hoyo J, Elliott A, Sargatal J (eds.). Handbook of the Birds of the World. Vol. 1. Ostrich to Ducks. Lynx Edicions, Barcelona; 1992
    del Hoyo J, Elliott A, Sargatal J (eds.). Handbook of the Birds of the World. Vol. 6. Mousebirds to hornbills. Lynx Edicions, Barcelona; 2001
    Dickinson EC, Remsen JV Jr. The Howard and Moore Complete Checklist of the Birds of the World (4th edition). Vol 1: Non-passerines. Aves Press, London; 2013
    Dickinson EC, Christidis, L. The Howard and Moore Complete Checklist of the Birds of the World (4th edition). Vol 2: Passerines. Aves Press, London; 2014
    Elzanowski A. Cretaceous birds and avian phylogeny. Courier Forschungsinst Senckenb. 1995;181:37-53
    Ericson PGP. Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J Biogeogr. 2012;39:813-824 doi: 10.1111/j.1365-2699.2011.02650.x
    Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett. 2006;2:543-547 doi: 10.1098/rsbl.2006.0523
    Fain MG, Houde P. Parallel radiations in the primary clades of birds. Evolution. 2004;58:2558-2573 doi: 10.1111/j.0014-3820.2004.tb00884.x
    Feduccia A. The morphological evidence for ratite monophyly: fact or fiction. Proc Int Ornithol Congr 1985;18:184-190
    Fjeldsa J. The systematic affinities of the sandgrouse, Pteroclididae. Vidensk Medd Dansk Naturh Foren 1976;139:179-243
    Furbringer M. Untersuchungen zur Morphologie und Systematik der Vogel, zugleich ein Beitrag zur Anatomie der Stutzund Bewegungsorgane. Bijdr Dierk. 1888;15:1-834 doi: 10.1163/26660644-01501002
    Gadow H. Vogel. II. Systematischer Theil. In Bronn, H.G. Klassen und Ordnungen des Thier-Reichs. Leipzig: C.F. Winter Pt 4; 1893
    Garcia-Moreno J, Sorenson MD, Mindell DP. Congruent avian phylogenies inferred from mitochondrial and nuclear DNA sequences. J Mol Evol. 2003;57:27-37 doi: 10.1007/s00239-002-2443-9
    Garrod, AH. On certain muscles of birds and their value in the classification. Part II. Proc Zool Soc London 1874:111-123 doi: 10.1111/j.1096-3642.1874.tb02459.x
    Gauthier J, De Queiroz K. Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name “Aves”. In: Gauthier JA, Gall LF (eds), New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom, Yale Peabody Museum, New Haven, pp. 7-41; 2001
    Gilbert P, Wu J, Simon MW, Sinsheimer JS, Alfaro ME. Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Mol Phylogenet Evol. 2018;126:116-128 doi: 10.1016/j.ympev.2018.03.033
    Gill BJ (Convener). Checklist of the Ornithological Society of New Zealand . Checklist of the Birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington: Te Papa Press, OSNZ; 2010
    Gill F, Donsker D, Rasmussen P (eds). IOC World Bird List (v10.2); 2020. https://www.worldbirdnames.org/new/ioc-lists/master-list-2/ [accessed 24 August 2020]
    Gordon EL, Kimball RT, Braun EL. Protein structure, models of sequence evolution, and data type effects in phylogenetic analyses of mitochondrial data: A case study in birds. Diversity 2021;13:555 doi: 10.3390/d13110555
    Grealy A, Phillips M, Miller G, Gilbert MTP, Rouillard JM, et al. Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Mol Phylogenet Evol. 2017;109:151-163 doi: 10.1016/j.ympev.2017.01.005
    Groth JG, Barrowclough GF. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol. 1999;12:115-123 doi: 10.1006/mpev.1998.0603
    Gussekloo SWS, Zweers GA. The paleognathous pterygoid-palatinum complex. A true character? Neth J Zool. 1999;49:29-43 doi: 10.1163/156854299X00038
    Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320:1763-1768 doi: 10.1126/science.1157704
    Haddrath O, Baker AJ. Multiple nuclear genes and retroposons support vicariance and dispersal of the palaeognaths, and an Early Cretaceous origin of modern birds. Proc R Soc B. 2012;279:4617-4625 doi: 10.1098/rspb.2012.1630
    Hansford JP, Turvey ST. Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world's largest bird. R Soc Open Sci 2018;5 (9):181295 doi: 10.1098/rsos.181295
    Harshman J. Reweaving the tapestry: what can we learn from Sibley & Ahlquist (1990)? Auk. 1994;111:377-388 doi: 10.2307/4088601
    Harshman J, Braun EL, Braun MJ, Huddleston CJ, Bowie RCK, et al. Phylogenomic evidence for multiple losses of flight in ratite birds. Proc Natl Acad Sci 2008;105:13462-13467 doi: 10.1073/pnas.0803242105
    Hedges SB, Simmons MD, van Dijk MAM, Caspers GJ, de Jong WW, Sibley CG. Phylogenetic relationships of the Hoatzin, an enigmatic South American bird. Proc Natl Acad Sci USA. 1995;92:11662-11665 doi: 10.1073/pnas.92.25.11662
    Ho CY-K, Prager EM, Wilson AC, Osuga DT, Feeney RE. Penguin evolution: protein comparisons demonstrate phylogenetic relationship to flying aquatic birds. J Mol Evol. 1976;8:271-282 doi: 10.1007/BF01731000
    Houde P. Palaeognatous birds from the early Tertiary of the northern Hemisphere. Publ Nuttall Ornithol Club. 1988;22:1-148
    Houde P, Olson SL. Paleognatous carinate birds from the early tertiary of North America. Science 1981;214:1236-1237 doi: 10.1126/science.214.4526.1236
    Houde P, Olson SL. A radiation of coly-like birds from the Eocene of North America (Aves: Sandcoleiformes new order). Natural History Museum of Los Angeles County, Science Series. 1992;36:137-160
    Houde P, Braun EL, Narula N, Minjares U, Mirarab S. Phylogenetic signal of indels and the neoavian radiation. Diversity 2019;11:108 doi: 10.3390/d11070108
    Houde P, Braun EL, Zhou L. Deep-time demographic inference suggests ecological release as driver of neoavian adaptive radiation. Diversity 2020;12:164 doi: 10.3390/d12040164
    Hume JP, Walters M. Extinct birds. London: Bloomsbury; 2012
    Huxley TH. On the classification of birds; and on the taxonomic value of the modifications of certain of the cranial bones observable in that class. Proc Zool Soc London. 1867:415-472
    ICZN. International code of zoological nomenclature. Fourth edition. London: International Trust for Zoological Nomenclature; 1999
    Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320-1331 doi: 10.1126/science.1253451
    Kimball RT, Oliveros CH, Wang N, White ND, Barker FK, et al. A phylogenomic supertree of birds. Diversity. 2019;11(7), 109 doi: 10.3390/d11070109
    Kimball RT, Wang N, Heimer-McGinn V, Ferguson C, Braun EL. Identifying localized biases in large datasets: A case study using the avian tree of life. Mol Phylogenet Evol. 2013;69:1021-1032 doi: 10.1016/j.ympev.2013.05.029
    Kooijman SA. The comparative energetics of petrels and penguins. Ecol Model. 2020;427, 109052 doi: 10.1016/j.ecolmodel.2020.109052
    Ksepka DT, Clarke JA. New fossil mousebird (Aves: Coliiformes) with feather preservation provides insight into the ecological diversity of an Eocene North American avifauna. Zool J Linn Soc. 2010;160:685-706 doi: 10.1111/j.1096-3642.2009.00626.x
    Ksepka DT, Phillips MJ. Avian diversification patterns across the K-Pg Boundary: influence of calibrations, datasets, and model misspecification. Ann Missouri Bot Garden. 2015;100:300-328 doi: 10.3417/2014032
    Ksepka DT, Clarke JA, Grande L. Stem parrots (Aves, Halcyornithidae) from the Green River Formation and a combined phylogeny of Pan-Psittaciformes. J Paleontol. 2011;85:835-852 doi: 10.1666/10-108.1
    Ksepka DT, Grande L, Mayr G. 2019. Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines. Curr Biol. 2019;29:657-663 doi: 10.1016/j.cub.2018.12.040
    Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, et al. An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of life. Mol Biol Evol. 2021;38:108-127 doi: 10.1093/molbev/msaa191
    Kuramoto T, Nishihara H, Watanabe M, Okada, N. Determining the position of storks on the phylogenetic tree of waterbirds by retroposon insertion analysis. Gen Biol Evol. 2015;7:3180-3189 doi: 10.1093/gbe/evv213
    Kurochkin EN. Synopsis of mesozoic birds and early evolution of class Aves. Archaeopteryx. 1995;13:47-66
    Liu Y, Liu S, Yeh CF, Zhang N, Chen G, Que P et al. The first set of universal nuclear protein-coding loci markers for avian phylogenetic and population genetic studies. Sci Rep. 2018;8:15723 doi: 10.1038/s41598-018-33646-x
    Livezey BC. A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae). Philos Tr R Soc London B. 1998;353:2077-2151 doi: 10.1098/rstb.1998.0353
    Livezey BC, Zusi RL Higher-order phylogenetics of modern Aves based on comparative anatomy. Neth J Zool. 2001;51:179-205 doi: 10.1163/156854201750385145
    Livezey BC, Zusi RL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. I. Methods and characters. Bull Carnegie Mus Nat Hist. 2006;37:1-556 doi: 10.2992/0145-9058(2006)37[1:PON]2.0.CO;2
    Livezey BC, Zusi RL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc. 2007;149:1-95 doi: 10.1111/j.1096-3642.2006.00293.x
    Manegold A. 2005. Zur Phylogenie und Evolution der „Racken”-, Specht- und Sperlingsvogel („Coraciiformes”, Piciformes und Passeriformes: Aves). PhD Dissertation. Berlin
    Marchant S, Higgins P. Handbook of Australian, New Zealand & Antarctic Birds (Vol. 1). Melbourne: Oxford University Press; 1990
    Mayr G. Avian higher-level phylogeny: well-supported clades and what we can learn from a phylogenetic analysis of 2954 morphological characters. J Zool Syst Evol Res. 2008a;46:63-72
    Mayr G. Phylogenetic affinities of the enigmatic avian taxon Zygodactylus based on new material from the early Oligocene of France. J Syst Palaeontol. 2008b;6:333-344 doi: 10.1017/S1477201907002398
    Mayr G. Paleogene Fossil Birds. Heidelberg, Springer; 2009
    Mayr G. Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds. J Zool Syst Evol Res. 2011;49:58-76 doi: 10.1111/j.1439-0469.2010.00586.x
    Mayr G. Comparative morphology of the radial carpal bone of neornithine birds and the phylogenetic significance of character variation. Zoomorphology 2014;133: 425-434 doi: 10.1007/s00435-014-0236-5
    Mayr G. A reassessment of Eocene parrotlike fossils indicates a previously undetected radiation of zygodactyl stem group representatives of passerines (Passeriformes). Zool Scr. 2015;44:587-602 doi: 10.1111/zsc.12128
    Mayr G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance. Chichester, Wiley-Blackwell; 2017
    Mayr G. Hindlimb morphology of Palaeotis suggests palaeognathous affinities of the Geranoididae and other “crane-like” birds from the Eocene of the Northern Hemisphere. Acta Palaeontol Polon. 2019;64:669-678
    Mayr G. A remarkably complete skeleton from the London Clay provides insights into the morphology and diversity of early Eocene zygodactyl near-passerine birds. J Syst Palaeontol. 2020;18:1891-1906 doi: 10.1080/14772019.2020.1862930
    Mayr G. A partial skeleton of a new species of Tynskya Mayr, 2000 (Aves, Messelasturidae) from the London Clay highlights the osteological distinctness of a poorly known early Eocene "owl/parrot mosaic". PalZ 2021;95:337-357 doi: 10.1007/s12542-020-00541-8
    Mayr G. Paleogene fossil birds, 2nd edition. Heidelberg, Springer; 2022
    Mayr G, Clarke, J. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics. 2003;19:527-553 doi: 10.1111/j.1096-0031.2003.tb00387.x
    Mayr G, Ericson PGP. Evidence for a sister group relationship between the Madagascan mesites (Mesitornithidae) and cuckoos (Cuculidae). Senckenb Biol. 2004;84:119-135
    Mayr G, Smith T. Phylogenetic affinities and taxonomy of the Oligocene Diomedeoididae, and the basal divergences amongst extant procellariiform birds. Zool J Linn Soc. 2012;166:854-875 doi: 10.1111/j.1096-3642.2012.00858.x
    McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE. 2013;8(1), e54848 doi: 10.1371/journal.pone.0054848
    McKitrick MC. Phylogenetic analysis of avian hindlimb musculature. Misc Publ Mus Zool Univ Michigan. 1991a;179:1-85
    McKitrick MC. Forelimb myology of loons (Gaviiformes), with comments on the relationship of loons and tubenoses (Procellariiformes). Zool J Linn Soc. 1991b;102:115-152 doi: 10.1111/j.1096-3642.1991.tb00285.x
    Meise W. Verhalten der Straussartigen Vogel und Monophylie der Ratitae. Proc Int Ornithol Congr. 1963;8:115-125
    Mindell DP. Galloanserae. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1255-1257; 2020
    Mindell DP, Honeycutt RL. Variability in transcribed regions of ribosomal DNA and early divergences in birds. Auk. 1989;106:539-548
    Mindell DP, Sorenson MD, Huddleston CJ, Miranda HC, Knight A, et al. Phylogenetic relationships among and within select avian orders based on mitochondrial DNA. In Mindell DP (ed.). Avian molecular evolution and systematics. San Diego: Academic Press, pp. 213-247; 1997
    Mitchell KJ, Llamas B, Soubrier J, Rawlence NJ, Worthy TH, Wood J, et al. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science. 2014;344:898-900 doi: 10.1126/science.1251981
    Nesbitt SJ, Clarke JA. The anatomy and taxonomy of the exquisitely preserved Green River Formation (early Eocene) lithornithids (Aves) and the relationships of Lithornithidae. Bull Am Mus Nat Hist. 2016;406:1-91 doi: 10.1206/0003-0090-406.1.1
    Olson SL. The fossil record of birds. Avian Biol. 1985;8:79-238
    Perktas U, Groth J, Barrowclough G. Phylogeography, species limits, phylogeny, and classification of the turacos (Aves: Musophagidae) based on mitochondrial and nuclear DNA sequences. Am Mus Novitat. 2020;3949:1-69 doi: 10.1206/3949.1
    Phillips MJ, Gibb GC, Crimp EA, Penny D. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst Biol. 2010;59:90-107 doi: 10.1093/sysbio/syp079
    Poe S, Chubb AL. Birds in a bush: five genes indicate explosive evolution of avian orders. Evolution. 2004;58:404-415 doi: 10.1111/j.0014-3820.2004.tb01655.x
    Prager EM, Wilson AC. Congruency of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of cracid birds. J Mol Evol. 1976;9:45-57 doi: 10.1007/BF01796122
    Prager EM, Wilson AC. Phylogenetic relationships and rates of evolution in birds. Acta IOC. 1980:1209-1214
    Prager EM, Wilson AC, Osuga DT, Feeney RE. Evolution of flightless land birds on southern continents: transferrin comparisons shows monophyletic origin of ratites. J Mol Evol. 1976;8:283-294 doi: 10.1007/BF01731001
    Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569-573 doi: 10.1038/nature15697
    Pycraft WP. On the morphology and phylogeny of the Palaeognathae (Ratitae and Crypturi) and Neognathae (Carinatae). Trans Zool Soc London. 1900;15:149-290 doi: 10.1111/j.1096-3642.1900.tb00023.x
    Pyle P. Evolutionary implications of synapomorphic wing-molt sequences among falcons (Falconiformes) and parrots (Psittaciformes). Condor 2013;115:593-602 doi: 10.1525/cond.2013.120173
    Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst Biol. 2017;66:857-879 doi: 10.1093/sysbio/syx041
    Sangster G. A name for the flamingo-grebe clade. Ibis. 2005;147:612-615 doi: 10.1111/j.1474-919x.2005.00432.x
    Sangster G. Mirandornithes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1265-1267; 2020a
    Sangster G. Charadriiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1269-1272; 2020b
    Sangster G. Procellariiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1273-1276; 2020c
    Sangster G. Strigiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1277-1280; 2020d
    Sangster G. Psittaciformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1285-1288; 2020e
    Sangster G. Daedalornithes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1289-1291; 2020f
    Sangster G. Apodiformes. In: De Queiroz K, Cantino PD, Gauthier, J (eds) Phylonyms: a Companion to the PhyloCode. Boca Raton: CRC Press, Taylor & Francis Group, pp. 1293-1296; 2020g
    Sangster G, Mayr G. A name for the clade formed by Procellariiformes, Sphenisciformes, Ciconiiformes, Suliformes and Pelecaniformes. Vert. Zool. 2021;71:49-53 doi: 10.3897/vz.71.e61728
    Sangster G, Collinson M, Crochet P-A, Knox AG, Parkin DT, Votier SC. Taxonomic recommendations for Western Palearctic birds: ninth report. Ibis. 2013;155:898-907 doi: 10.1111/ibi.12091
    Sclater PL. Remarks on the present state of the systema avium. Ibis. 1880;22(4):340-350, 399-411.
    Sharpe RB. A review of recent attempts to classify birds. Proc. 2nd Int. Ornithol. Congr., Budapest; 1891
    Sibley CG, Ahlquist JE. Phylogeny and Classification of Birds. New Haven: Yale Univ. Press; 1990
    Sibley CG, Ahlquist JE, Monroe BL. A classification of the living birds of the world based on DNA-DNA hybridization studies. Auk. 1988;105:409-423 doi: 10.1093/auk/105.3.409
    Simmons MP, Springer MS, Gatesy J. Gene-tree misrooting drives conflicts in phylogenomic coalescent analyses of palaeognath birds. Mol Phylogenet Evol. 2022;167:107344 doi: 10.1016/j.ympev.2021.107344
    Slack KE, Delsuc F, Mclenachan PA, Arnason U, Penny D. Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol Phylogenet Evol. 2007;42:1-13 doi: 10.1016/j.ympev.2006.06.002
    Smith JV, Braun EL, Kimball RT. Ratite non-monophyly: independent evidence from 40 novel loci. Syst Biol. 2013;62:35-49 doi: 10.1093/sysbio/sys067
    Smith ND. Phylogenetic analysis of Pelecaniformes (Aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies. PLoS ONE. 2010;5(10):e13354 doi: 10.1371/journal.pone.0013354
    Stapel SO, Leunissen JAM, Versteeg M, Wattel J, de Jong WW. Ratites as oldest offshoot of avian stem-evidence from α-crystallin A sequences. Nature 1984;311:257-259 doi: 10.1038/311257a0
    Stegmann B. Uber die phyletischen Beziehungen zwischen Regenpfeifervogeln, Tauben und Flughuhnern. J Ornithol. 1968;109:441-445 doi: 10.1007/BF01671579
    Suh A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool Scr. 2016;45:50-62 doi: 10.1111/zsc.12213
    Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, et al. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Comm. 2011;2, 443 doi: 10.1038/ncomms1448
    Suh A, Smeds L, Ellegren H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 2015;13(8), e1002224 doi: 10.1371/journal.pbio.1002224
    Torres CR, Clarke JA. Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions. Proc R Soc B. 2018;285:20181540 doi: 10.1098/rspb.2018.1540
    Urantowka AD, Kroczak, A, Mackiewicz P. New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral gene rearrangement in Aves. BMC Genomics. 2020;21:874 doi: 10.1186/s12864-020-07284-5
    van Tuinen M, Butvill DB, Kirsch JAW, Hedges SB. Convergence and divergence in the evolution of aquatic birds. Proc R Soc London B. 2001;268:1345-1350 doi: 10.1098/rspb.2001.1679
    Wang N, Braun EL, Kimball RT. Testing hypotheses about the sister group of the Passeriformes using an independent 30 locus dataset. Mol Biol Evol. 2012;29:737-750 doi: 10.1093/molbev/msr230
    Wetmore A. A classification for the birds of the world. Smithson Misc Coll. 1960;139(11):1-37
    Worthy TH, Holdaway RN. The lost world of the moa: prehistoric life of New Zealand. Bloomington, IN: Indiana University Press; 2002
    Worthy TH, Degrange FJ, Handley WD, Lee MSY. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres). R Soc Open Sci. 2017;4:170975 doi: 10.1098/rsos.170975
    Yonezawa T, Segawa T, Mori H, Campos PF, Hongoh Y, et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr Biol. 2017;27:68-77 doi: 10.1016/j.cub.2016.10.029
    Yuri T, Kimball RT, Harshman J, Bowie RCK, Braun MJ, et al. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. Biology. 2013;2:419-444 doi: 10.3390/biology2010419
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (428) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return